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C H A P T E R 8

Money
Management

Everybody’s got a plan until they get hit.

—Mike Tyson

Although it is not true that a good money management system can turn
any trading method into a profitable one, it is certainly possible to ruin

even the best trades with poor money management. Edge estimation and
capture are difficult and both involve subjective judgment. So it is probably
understandable that traders focus so heavily on these aspects of trading. But
money management and trade sizing is just as essential for success. In this
chapter we look at the various methods we can use to size trades and the
risk/reward characteristics that each choice implies.

■ Ad Hoc Sizing Schemes

Consider the equity curves shown in Figures 8.1 and 8.2. It seems obvious
that the trader in the first figure is in some sense better. He has made
much more money in the same period of time, albeit while displaying
more variance. Actually, in this instance, the trades that the traders made
were identical. All the difference in their equity curve was due to the
sizing strategy. Both traders were playing a game where they flipped a coin
and received a dollar if they were correct and paid a dollar if they were
wrong. Each won 550 bets out of 1,000. But the first trader finished with
$5,207 and the second only accumulated $620. Trade sizing is clearly an
important issue.
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FIGURE 8.1 An Equity Curve for a Trader Betting 5 Percent of His Bankroll on
Each Trade
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FIGURE 8.2 An Equity Curve for a Trader Betting $5 on Each Trade

The simplest method is to size according to ‘‘feel.’’ The trade size is
adjusted on an ad hoc basis depending on how good the trader thinks the
individual bet is. This is a terrible idea. This isn’t really so different to
picking trades based on feel and it is quite possible that the sizing decisions
can dominate the trade choices themselves. Our entire methodology is
based on the idea that we can systematically approach the trading process,
and to size our trades according to hunches goes completely against this. It
will let us fall victim to our moods and psychological biases: precisely what
we are trying to avoid.

The next step is to trade the same amount every time. For example, we
might choose to always trade 100 options or 1,000 vega. This is known
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as a fixed trade size system. Any system that can find value will be profitable
(over the long run) with such a sizing scheme. In back testing this is often
the sizing scheme used, as it most clearly shows the profitability of the
underlying method.

Or we could choose to trade a constant percentage of our bankroll at
each opportunity. This is known as a fixed fraction sizing system.

Our example earlier was for just one group of 1,000 bets. Figure 8.3
shows the results for another three trials. We can see two things. First,
even though in all cases we have the same mathematical edge (a 55 percent
chance of winning an even money bet) the results vary wildly. Second, the
choice of bet size makes a huge difference. Proportional betting sometimes
results in vastly greater final wealth and our wealth can never go to zero
(at least in the idealized case we consider here where we have infinitely
divisible currency units), but looks to be much more volatile in its results
than fixed betting.

This numerical experiment has clearly shown that the choice of a staking
plan is important. And in addition to the two schemes mentioned earlier,
there are a number of others we could dream up. For example, we could
bet so that all successful bets would win the same amount, increase bets
(either by absolute size or relative size) after a win, or we could adopt
a similar strategy where we increase bet size after a loss. With all these
schemes there will be parameters we need to choose, for example, what
percentage of our bankroll to start betting with.

These methods are often used as the basis of betting systems. It is
quite easy to make them seem appealing to mathematically unsophisticated
gamblers. Let’s consider again our coin-tossing game where we win at a
rate of 55 percent. If we double our stake each time we lose a bet until we
eventually win, we end many betting runs with wins of a single unit but
eventually we lose our entire bankroll. We haven’t changed the expectation
of our distribution, but we have introduced a massive amount of skew,
trading frequency of win for size of loss.

How can we decide between all the alternatives? A possible solution to
this problem was found by John Kelly (1956).

■ The Kelly Criterion

Consider a general situation such that when we win, we gain w percent and
when we lose, we lose l percent. Our bankroll is initially W0. Each bet is a
set fraction, f, of the bankroll.
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FIGURE 8.3 Three More Comparative Equity Curves for the Same Process as in
Figure 8.1
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So after a win our bankroll is

W0(1 + fw) (8.1)

Or we can say that the gain factor is (1 + fw). Similarly, a loss would leave
us with

W0(1 − f l) (8.2)

So the gain factor here is (1 − fl). More simply, each time we win we
multiply by (1 + fw) and when we lose we multiply by (1 − fl). So for n

wins and m losses the gain factor is

G( f ) = (1 + fw)n(1 − f l)m (8.3)

Or per trade we get

G( f )
1

n+m ≡ g( f ) = (1 + fw)p(1 − f l)q (8.4)

where p = n/(n + m) is the probability of a win and q = m/(n + m) is the
probability of a loss.

It would be a mistake to choose f to maximize G. On any finite number
of bets, our expected return would be maximized by betting our entire
bankroll each time. Sadly, this also gives us a 100 percent chance of going
bankrupt, as eventually we are bound to lose. This strategy takes no account
of risk. We actually want to maximize our risk-adjusted return or utility.
This involves choosing a particular utility function again. Generally the log
utility function is chosen (we could choose any one of a number of utility
functions but the log function can be shown to do better in the long run
than any other). In this case we will not be maximizing expected wealth but
we will be maximizing typical wealth. This distinction is important. The
average value would be heavily distorted by the unlikely case where the
trader wins every trade. This won’t be of great consolation to the traders
who have gone bankrupt. By maximizing the logarithm of expected wealth
we eliminate the possibility of bankruptcy.

So we take the log of the gain function and find the optimal f by
differentiating with respect to f then setting this equal to zero. This gives

f = (pw − ql)

wl
(8.5)

(So in our initial simple example the Kelly fraction would have been 0.1.)
Our expected bankroll after N bets would be given by

W = W0(1 + p ln(1 + fw) + q ln(1 − f l))N (8.6)

Figure 8.4 shows the expected bankroll for 10 bets as a function of bet
size where wins pay twice as much as the losses and we win 45 percent of
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FIGURE 8.4 The Expected Bankroll for 10 Bets as a Function of Bet Size

bets. The Kelly ratio in this case is 0.175, which corresponds to the peak
of the curve. Betting more than twice Kelly turns the growth rate negative
and our bankroll becomes more depleted as we bet bigger.

Running some simple simulations should make several points abundantly
clear:

■ The Kelly fraction generally finishes with more wealth than any other
chosen proportional scheme.

■ The swings in our equity become uncomfortably large when betting the
Kelly fraction.

■ Betting more than Kelly is worse than betting less.

This last point is worth emphasizing. Betting more than Kelly results in
higher volatility and lower returns. This can be seen in Figure 8.5 where
we show one realization of a profit and loss (P/L) curve for the coin tossing
game when using half Kelly, full Kelly, and twice Kelly bet sizes.

At this point, let’s just assume that the Kelly strategy is sufficiently
intriguing to make it worthwhile considering a more realistic situation:
one that is closer to those we might encounter when trading financial
instruments.

We need to generalize the situation to deal with a continuous outcome.
Imagine trading a situation where the outcome of a bet or trade is known
to have a certain distribution. This would be the typical situation facing a
trader: Either the distribution can be estimated from historical trade results
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FIGURE 8.5 The Relative Volatility of a P/L Path Generated by Trading at Various
Multiples of the Kelly Ratio

or from more theoretical considerations. We do still insist at this point
that the trades be independent and identically distributed. Again we bet a
fraction, f, of our wealth at the start of each period so that

Wn = Wn−1 + f Wn−1g(Xn) (8.7)

where Xn is the random variable giving the result of the nth trade and it has
the payoff g(Xn). After a sequence of n trades our bankroll will be

Wn = W0

n∏
i=1

(1 + fg(Xi)) (8.8)

Now we take logarithms as before:

ln(Wn) = W0

n∑
i=1

ln(1 + fg(Xi)) (8.9)

So

E[ln(Wn)] = nW0E[ln(1 + fg(Xn))] (8.10)

= nW0

∫
ln(1 + fg(x))�(x)dx (8.11)

where �(x) is the distribution function that describes the results of the
trades. If we maximize over the bankroll fraction, f, we find that the optimal
value is the one that satisfies∫

g(x)�(x)dx

1 + fg(x)
= E

(
g (x)

1 + fg(x)

)
= 0 (8.12)
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This equation is quite general. It applies to all distributions. It is sometimes
incorrectly stated that the Kelly criterion only applies to trades with binary
outcomes. This is untrue. However, in the case of binary events, certain
simplifications can be made. These approximations do indeed have limited
applicability. In general, Equation 8.12 is too unwieldy to use directly, but
if we consider the case where our edge per trade is small we can make
things simpler (and sadly this case usually is fairly representative of reality).
In this situation we know that f will be small and we can expand Equation
8.12 in a power series, and then truncate after leading order to get

0 ≈
∫

g(x)�(x)(1 − fg(x) + · · ·)dx

=
∫

g(x)�(x)dx − f

∫
g2(x)�(x)dx + · · · (8.13)

But the first term is just the expected payoff for a unit bet and the second
term is the variance of the payoff, g(x). So in the limit of small edge we
obtain

f = r

σ2
(8.14)

This is certainly simple enough to use. To estimate our trading size we
need only the expected return of the trade and its variance, no matter how
complicated the actual trade is. Actually, the return here should generally
be interpreted as the return over the risk-free rate. Many derivations neglect
to mention this (those aimed at gamblers probably neglect it as it is difficult
to earn interest while sitting at a blackjack table and bookmakers tend not
to pay interest, either).
The expected growth rate for someone trading at a fraction, f, of the Kelly
ratio is given by

GR =
(

f − f 2

2

)
r2

σ2
(8.15)

which is maximized for f = 1: trading at the full Kelly ratio when the growth
rate is

GRmax = r2

2σ2
(8.16)

And we see that the growth rate is zero for f = 0, the case where we don’t
trade at all, and f = 2, when we drastically overbet. As the growth rate is
symmetric around f = 1, we can see it is better to bet more conservatively
and hence to underestimate our edge (or equivalently to overestimate our
variance) as we will obtain the same growth for f = 1 − x and f = 1 + x.
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If we are trading according to the Kelly criterion the probability that we
reach a bankroll B × W > W0 before we dip to A × W < W0 is given by

P(A, B) = 1 − A
1− 2

f

B
1− 2

f − A
1− 2

f

(8.17)

It is interesting that the edge and variance of the trade don’t appear here.
Having a ‘‘better’’ trade just speeds up the process. If A = 0.5 and B = 2,
we get P(A,B) = 2/3. Conversely, this means that when betting at full Kelly
you have a one-third chance of having your bankroll halve before it doubles!
As we saw in our earlier simulations Kelly sizing is exceedingly volatile.
To deal with these extreme drawdowns it is reasonably common for Kelly
devotees to trade at a fraction of the Kelly ratio. Table 8.1 shows how the
probability of halving before doubling can be changed by using a fractional
Kelly ratio.

Reducing drawdowns by trading at a fraction of the Kelly ratio is not a
free lunch. By trading smaller we dramatically increase the time needed to
reach our upside goal. The expected exit time is given by

E[T] = 1

GR
log

(
BP(A,B)

AP(A,B)−1

)
(8.18)

This is the mean time before we reach our goal (B.W0), or are stopped
out (at A.W0).

There is no compelling theoretical reason for sizing trades according to the
fractional Kelly idea. Fractional Kelly doesn’t correspond to maximizing any
utility function. There are two practical reasons for using fractional Kelly.

1. It is a pragmatic attempt to find a middle ground between realizing the
potential returns from trading at the full Kelly ratio and reducing the
resulting high volatility.

TABLE 8.1 Probability of Doubling before
Halving as a Function of
the Kelly Fraction That
We Are Trading

Fraction of Kelly Prob (A,B)

1 0.667
0.8 0.739
0.6 0.834
0.4 0.941
0.2 0.998
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2. It is a poor man’s Bayesian approach to acknowledging the general
difficulty of beating markets. For example, half-Kelly corresponds to
taking an average of our edge estimate and the zero-edge alternative that
the market is a perfect predictor of future value.

We now have some sort of intuition about our prospective profit and
loss distribution when using Kelly. We have the expected growth rate, a
measure of dispersion (the drawdown probability) and the expected time to
reach our goals. But it is actually possible to calculate the entire probability
distribution of our future bankroll. A paper by Chapman (2007) shows
how the bankroll spreads through time. For convenience we take the initial
bankroll to be one. He shows the probability distribution evolves as

P(x, f , t) = exp

((
1 − 1

f

)
t

)
1√
2πt

exp

⎛
⎜⎜⎜⎝−

(
log x +

(
3

2
− 1

f

)
t

)2

2t

⎞
⎟⎟⎟⎠

(8.19)
Figure 8.6 is worth examining carefully. It shows the evolution through

time of the probability distribution function (PDF) of the bankroll when
trading at the Kelly fraction. We see that over time the bankroll relaxes
and diffuses away from its initial value. We can also see that when betting
at the full Kelly ratio, our distribution of outcomes is highly skewed (this
should have already been evident from the earlier discussions of drawdowns
but some more visual evidence can emphasize the point). The peak of the
probability distribution function is less than one. We know that in the long
run the Kelly strategy comprehensively dominates other strategies but we
also know the result of any one series of trades is volatile so may be poor in
the short run (before the growth rate has had a chance to overwhelm the
volatility) and the ‘‘long run’’ may take quite some time to arrive.

Figure 8.7 shows how trading at a reduced Kelly fraction (in this case
half-Kelly) substantially shifts the peak of the PDF to the right while still
maintaining the skewness, which makes large wins possible.

Conversely, Figure 8.8 shows that trading higher than Kelly (twice Kelly
in this instance) means that the PDF is pulled toward zero as time passes.

Sizing bets/trades according to the Kelly criterion is a controversial topic
(see Poundstone 2005 for a very readable account). Most of the discussion
centers around the idea that maximizing the logarithm of expected wealth
isn’t really what a sensible investor would want; that is, the utility function
is specified incorrectly. The anti-Kelly group includes Nobel Prize winners
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FIGURE 8.6 The Evolution through Time of the PDF of the Bankroll When Trading at
the Kelly Fraction
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FIGURE 8.7 The Evolution through Time of the PDF of the Bankroll When Trading at
the Half of the Kelly Fraction

(Samuelson 1979), finance professionals (Brown 2002), and sports gamblers
(Miller, www.professionalgambler.com). However, the other side of the
argument also boasts some impressive names, including Ed Thorpe (1984,
1997), Claude Shannon (inventor of information theory), David Shaw
(founder of D. E. Shaw), and William Miller (manager of the Legg Mason
Value Trust, the only SEC regulated mutual fund to outperform the S&P
500 for 10 consecutive years). As the method is dependent on a utility
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function, it isn’t too surprising that people disagree. But instead of getting
into arguments over what other people’s risk preferences should be, let’s
simply look at the Kelly criterion’s good and bad points.

Good Points
■ Maximizing the expected value of the logarithm of wealth asymptotically

maximizes the rate of growth, so the Kelly strategy eventually outperforms
all others.

■ The Kelly strategy has zero risk of ruin.

■ On average we will always be ahead of any other strategy.

■ The strategy is myopic, in the sense that we only ever need to consider
our current opportunities and bankroll, not subsequent situations. This
is not the case for progression-type methodologies where current trade
sizes are a function of previous trade sizes. Myopia is useful when deciding
if a strategy is practically useable.

■ Trading a fraction of the Kelly amount allows us to easily tune our desired
level of risk at the expense of lower expected returns.

Bad Points

■ When betting a fraction of wealth, a loss followed by a win still leaves us
behind.
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■ The amount bet becomes extremely large in situations where we have a
large amount of edge, that is, when the probability of a win is high or the
risk is very low.

■ Probability estimation becomes crucial. Overinvesting based on overes-
timation of success likelihood will lead to disaster.

■ The total amount of money invested is far larger than the winnings.

■ Due to the strategy’s volatile outcomes, it is possible to have sessions
with poor outcomes even though the long-term expectations are high.

■ The time necessary for the long run to dominate can be very long indeed.

■ Sometimes it isn’t obvious what ‘‘bankroll’’ is.

The good points have been studied and may well seem so good that any
bad points can be ignored. Isn’t the fact that sizing according to the Kelly
criterion eventually creates more wealth than any other strategy, enough
to override any concerns? Before we come to this conclusion, let’s take a
slightly closer look at the bad points we haven’t already noted.

■ Time for Kelly to Dominate

We all know we need to be patient when trading. This is often axiomatically
stated as a virtue. We tend to say reflexively that we possess patience
because we are so acutely aware that it is necessary for a good trader, but
how patient do we need to be to reap the benefits of the Kelly strategy?

An example from Browne (2000) shows that waiting for the long run
can be more tedious than we might reasonably expect. He considers an
investor who has a choice between a stock with an annual return of
15 percent and a volatility of 30 percent and an interest bearing account
that pays 7 percent. The Kelly criterion (Equation 8.14) has us invest
89 percent of our wealth (0.15 − 0.07/(0.3)2) in the stock and put the
remainder in the bank. Before we have a 95 percent probability of beating
the all cash portfolio by 10 percent, we have to wait 157 years. Even
worse, to have a 95 percent probability of beating the all-stock portfolio
by 10 percent, we have to wait 10,286 years. Even the expected times
to outperform these benchmarks is 2.8 years and 184 years.1 Patience is
indeed necessary.

1The expected time for Kelly to outperform another strategy with a trading fraction f ′, by
ε percent is given by 2

σ2(f −f ′)2 ln (1 + ε)
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■ Effect of Parameter Mis-Estimation

In practical financial applications we will never really know the distribution
of outcomes of the trades. Do our errors in estimating the distribution
actually matter? This was studied by Medo, Pis’mak, and Zhang (2008).

First we consider trades with a binary outcome. If we lose, we pay a
dollar and if we win, we gain a dollar. If the win probability is p > 0.5, we
have a favorable game and the Kelly ratio is

f = 2p − 1 (8.20)

But what if we don’t know p? What if we have to estimate it from historical
data? Assume that we have N trials to do this estimation and in this period
we see w wins. Bayes’ theorem gives the distribution of the true probability
as

θ(p|w, N) = π(p)P(w|p, N)
1∫

0

π(p)P(w|p, N)dp

(8.21)

where π(p) is the prior distribution of p, and P(w|p,N) is the probability
distribution of w, given N and p. P is a binomial distribution with mean pN.

P(w|p, N) =
(

N

w

)
pw(1 − p)N−w (8.22)

As all of the information we have is contained in the observations, the
prior needs to reflect this maximum ignorance. So we need to use the
uniform distribution, π(p) = 1, over the range of p from zero to one (The
choice or prior can also be used to bias our estimate low, reflecting caution
in our ability. For example, we might choose to use a distribution defined
over the range of zero to 0.75). Evaluating the integral in Equation 8.21
gives us

θ(p|w, N) = (N + 1)!

w!(N − w)!
pw(1 − p)N−w (8.23)

This distribution has a mean

〈p〉 = w + 1

N + 2
(8.24)

This is important. Our naive guess of win rate (6 wins out of 10 implying
a true rate of 0.6) will always overestimate. We need to incorporate the
effects of our prior ignorance. This lessens the weight we give to the
observations. The distribution is shown in Figure 8.9 for w = 6 and N = 10.
Note also that there is a significant chance of the results of this trade
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FIGURE 8.9 The Posterior Distribution When Observing 6 Wins in 10 Plays

appearing to have a negative expectation. This can be found by looking at
how much of the cumulative Kelly distribution is below 0.5. In this case it
is around 27 percent.

Further, we can calculate the variance of the distribution.

Var(p) = (w + 1)(w + 2)

(N + 2)(N + 3)
− (w + 1)2

(N + 2)2
(8.25)

In this example, we get a standard deviation of 0.137.
What is the Kelly ratio in these circumstances, where clearly we have the

extra ‘‘risk’’ of parameter uncertainty? There is a significant chance that we
may even be playing in a losing game.

The Kelly ratio is the amount, f, that maximizes the logarithmic gain. We
also know, from the work of Chapman (among others), that this corresponds
to using the average of the win probability. But we can illustrate this with a
simple example.

Consider the simplest case. The winning probability can take one of two
values: p1 with probability F1 or p2 with probability F2. Now we can write
the growth rate as

G = (F1p1 + F2p2) ln(1 + f ) + (1 − F1p1 − F2p2) ln(1 − f ) (8.26)

Differentiating this with respect to f and setting equal to zero gives the
Kelly ratio as

f = 2(F1p1 + F2p2) − 1 (8.27)
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This is clearly just
f = 2〈p〉 − 1 (8.28)

This doesn’t seem particularly interesting, but when we combine this
with Equation 8.24 we see that

f = 2w − N

N + 2
(8.29)

If we compare this with the naive value where we estimate p to be w/N

we see that
f

fnaive

= 2w − N

N + 2

2
w

N
− 1

= 2w − N

N + 2
× N

2w − N
= N

N + 2
(8.30)

which implies that the naive estimate will always bias our bets too high.
This effect isn’t particularly large and in the limit of large N it disappears

completely. In fact after 100 trials we will be off by only 2 percent. Of
more importance is the variance of f. How many trials do we need to be
reasonably sure that our measured value is close to being correct?
The delta method tells us that the variance of f is given by

var( f ) =
(

∂ f

∂p

)2

var(p) (8.31)

Using Equations 8.25 and 8.31 we get

var( f ) = 4

(
(w + 1) (w + 2)

(N + 2)(N + 3)
− (w + 1)2

(N + 2)2

)
(8.32)

So looking back at the case in the figure where w = 6, N = 10: We
would estimate that the standard deviation of f would be approximately
0.274. This again diminishes as N increases. If we had observed 60 wins in
100 trials our standard deviation would be only 0.097.

The actual dependence of the standard deviation of the Kelly ratio with
sample size conforms to our expectations. More data implies less deviation.
For a theoretical win probability of 0.6, the deviation as a function of sample
size is shown in Figure 8.10.

■ What Is Bankroll?

Bankroll certainly isn’t haircut. The haircut is the amount we need to post
at our clearing firm, but it certainly is not the amount you are able to
lose. Generally it is better to think of bankroll as the amount you can lose
before the strategy is abandoned. But sometimes this isn’t clear either. This
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FIGURE 8.10 The Dependence of the Standard Deviation of f as a Function
of Sample Size

was studied by Leib (1995). He pointed out that amateur blackjack players
should bet much more aggressively than professionals as the amateurs could
replenish their bankrolls from their other income. This concept also applies
to traders who can switch jobs.

There are two ways that the Kelly criterion can be interpreted:

1. It is the strategy that maximizes the expect growth of the bankroll.

2. It is the strategy that maximizes the logarithmic utility function.

Neither interpretation is really consistent with a situation where we can
replenish our bankroll.

Within the first framework, the goal is to become as rich as possible as
quickly as possible. Going bankrupt is bad because it makes further growth
impossible. Having any money at all left is infinitely better than having
none. However, if there is another source of capital available (from another
job or backer, for example), then further growth is still possible.

Under the utility growth interpretation capital growth is just a conse-
quence. Utility growth is an end in itself. Here, going broke is infinitely bad
purely because utility becomes unboundedly bad.

Under either interpretation, losing all of your bankroll is infinitely bad.
It is important to emphasize the word infinitely. This means that there is
never any way to come back. And this is seldom the case in real life. We are
really talking about cases where the gambler has risked life itself.

We can align ourselves more closely with the Kelly approach if we con-
sider our total wealth and then adjust the fractional adjustment accordingly.
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For example, if we have a trading account of $1 million and a total net worth
of $5 million we could choose a bankroll of $5 million and a Kelly fractional
multiplier of 0.1 instead of a bankroll of $1 million and a multiplier of 0.5.
For bets with small edge the differences will be minimal but when the edge
becomes large the difference will be apparent.

■ Alternatives to Kelly

So is what Kelly does really what a trader wants? As always, the answer
is, ‘‘it depends.’’ What externally imposed constraints does he face? In a
personal account where no one else can stop him out due to a drawdown, a
trader may be happy to use Kelly and tune the volatility by trading a fraction
of the full Kelly ratio. Similarly, when we are making an enormous number
of trades in a short period we may accept a Kelly-based sizing method,
as we can be more confident that the long run will arrive soon enough to
overwhelm any variance effects. But when trading in an institutional setting
or when being backed by someone else, the Kelly criterion is probably
not really aligned with the interest of the trader. Here traders aren’t as
interested in optimal long-term growth as they are in a better chance of
making a profit. They will trade maximal long-term potential for more
certain short-term profits. We said earlier that Kelly was expected to
outperform other strategies, so what can traders do that are better? They
can gain a more certain short-term profit by giving up the impossibility
of ever going broke. (When trading according to Kelly or any fractional
money management scheme we can never go broke. However, this is really
a theoretical point because most traders will get fired as quickly for turning
in a 90 percent drawdown as a 100 percent drawdown.) To see the general
principle behind this trade-off we now look at Oscar’s system, a progressive
betting system first devised by a craps player in the 1950s (Wilson 1965).

A progressive betting system can never turn a negative edge into a positive
edge. There is no magic. But the sizing algorithm can change certain aspects
of the payout schedule. We have already seen this. We earlier mentioned
the skewness generated by doubling bets after losses. Also, the fractional
Kelly system traded lower returns for smaller drawdowns. Oscar wanted
something entirely different. He just wanted every weekend he spent in
Las Vegas to end with a small win. So he devised a progression that works
exceedingly well in the short run.

There are two general types of betting progressions: positive progressions
and negative progressions. With a positive progression, the general theory
is that you raise your bets after wins, which means that your bigger bets
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are primarily funded by prior profits. The Kelly scheme is an example of a
positive progression.

With a negative progression, you raise your bets after losses. This attempt
to get back even more quickly is more dangerous, since a bad run of losses
can wipe you out quickly. However, these schemes are seductive in that
they allow you to win after a session in which you’ve lost more bets than
you’ve won. Since your bets after losses are bigger bets, you don’t have to
win so many of them to come back. Or you lose so many consecutive bets
that you go broke.

Many attempts have been made to combine the best features of these
systems. Oscar’s system was one. Oscar wanted to win just one unit. Each
session started with a one-unit bet. If it won, he stopped. If he lost, the next
bet was the same size. (So we take more risk than Kelly because our bets
as a percentage of our bankroll grow as we lose.) After a win, the next bet
would be one-unit higher than the last. No bet would ever be so large that
it would take us over the target.

This system has been analyzed in detail, first by Wilson and then
more extensively by Ethier (1996). The probability of success is shown in
Table 8.2.

The problem is that in the rare instances that things go badly, they go
horrendously badly. According to Wilson, in the 1960s Julian Braun ran
a computer simulation of Oscar’s system. He assumed the house had a
betting limit of 500 units and that the probability of success for each bet was
244/495 (consistent with craps). In 280,000 trials there were 66 disasters
where the gambler bumped up against the house limit. These situations lost
an average of 13,000 units. So the laws of mathematics can’t be cheated, but
we can choose to push the disasters into the future rather than experience
them continuously. To a certain degree, you can choose when to take your
(inevitable) losses.

TABLE 8.2 The Probability of Reaching a Profit Target of one unit before
having to quit when using Oscar’s system, as a function of the
win probability for a single trial, p, and the house limit M

M p = 9/19 p = 244/495 p = 1/2

50 0.99078112 0.99620367 0.99734697
100 0.99464246 0.99841219 0.99904342
150 0.99587158 0.99902785 0.99947577
200 0.99646866 0.99930553 0.99965833
250 0.99681764 0.99946077 0.99975501
300 0.99704404 0.99955895 0.99981337
350 0.99720107 0.99962624 0.99985174
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The situation for traders is different. Here we have a positive expectation.
But we would still like to perform a similar trick to Oscar and somewhat
smooth our stream of profits. We would also like to reduce our dependency
on the long run. This was the problem addressed by Browne (1999, 2000).
Specifically he found the dynamic strategy that maximized the probability of
reaching a given wealth level in a specified time. He shows that the optimal
fraction to invest with T, time left to reach the Goal B when current wealth
is W, is given by

f ∗ = 1

σ
√

T

B exp(−rT)

W
n

(
N−1

(
W exp (rT)

B

))
(8.33)

where

n(x) = 1√
2π

exp

(−x2

2

)
(8.34a)

N(x) =
x∫

=∞
n(z)dz (8.34b)

and r is the interest rate.
Browne shows that this sizing strategy is equivalent to the hedging

strategy of a binary call. This argument is insightful and should help option
traders get a feel for the behavior of the strategy. It may also help us think of
ideas for generalizing the argument to more realistic scenarios, for example,
where we have a stop placed on our bankroll as well as a target on the
upside.

If we have a stock that evolves according to our normal model of GBM,
the value of an option that pays B if we are above the strike, K, at time, T,
is given by

C = B exp(−r(T − t))N

⎛
⎜⎜⎝

ln

(
S

K

)
+

(
r − 1

2
σ2

)
(T − t)

σ
√

T − t

⎞
⎟⎟⎠ (8.35)

(Haug 2007b).
The delta of this option is given by

Δ = B exp(−r(T − t))n

⎛
⎜⎜⎝

ln

(
S

K

)
+

(
r − 1

2
σ2

)
(T − t)

σ
√

T − t

⎞
⎟⎟⎠ 1

Sσ
√

T − t

(8.36)
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Δ is the number of shares in the hedging portfolio, so at any time the
value of the hedge is given by ΔxS. If we were actually short the option,
our aim would be to hedge it so that we maximized the probability that
we could pay off the claim at expiry. Or, at any given time our ‘‘wealth’’
is given by the expression in Equation 8.35 and we need to maximize the
probability that our terminal wealth is given by B. The optimal policy in
such a case is given by Equation 8.33, here with wealth x = C(t,S). Making
this substitution we obtain

f ∗ = ΔS (8.37)

So this strategy is indeed equivalent to the hedging strategy of the digital
call where we consider the ‘‘stock price’’ to be our wealth, W. Figures 8.11
and 8.12 show the difference between this dynamic sizing strategy and the
constant Kelly strategy. This assumes that we are trading a stock with a
drift of 22 percent, an annualized volatility of 45 percent, and there is
also a risk-free rate of 8 percent. In this case the Kelly ratio is 0.6914.
Our goal is to make 50 percent in a session of 100 trading days (not
completely unreasonable but very optimistic given the drift and volatility
of the underlying). We can see that initially the Browne strategy is much
more aggressive. We know that our goal requires us to take significant
risk. Initially we trade at a leverage of 1.8, three times the leverage of the
Kelly strategy. But as we get closer to our goal, we significantly dial down
the risk. In practice, we would continually monitor our goals and make
adjustments (this process is discussed in Chapter 9).
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FIGURE 8.11 The Wealth Accumulated When Following the Browne and Kelly
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TABLE 8.3 Time Needed for Browne’s Strategy to Beat Competing
Strategies by 10 Percent

Bankruptcy
Probability

Time to Beat Cash
by 10 Percent (years)

Time to Beat Stock
by 10 Percent (years)

0.05 1.3 85
0.01 14 900
0.001 43 2,780
0.0001 73 4,774

He also shows that the expected time for this strategy to beat any other
is given by

T =

⎡
⎢⎢⎣

N−1 (1 − α) − N−1

(
1

1 − ε

)
σ(f − f ′)

⎤
⎥⎥⎦

2

(8.38)

So now we can compare this strategy to Kelly’s results given above.
These numbers are far better than for the Kelly strategy. Recall that for

Kelly to beat the stock by 10 percent (at the 95 percent confidence level), it
would take 10,286 years. Granted, trading using the Kelly criterion would
leave us with no chance of bankruptcy but the significant improvement in
the expected time to perform may well make this small risk worthwhile.

As we can see according to the criteria of expected time to dominate,
this method is far better than Kelly. It is also riskier. Specifically, we expect
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to achieve our goal with probability V, and go bankrupt with probability
1 − V, where V is given by

V = N

(
N−1

(
W exp (rT)

B

)
+ μ − r

σ

√
T

)
(8.39)

and where
μZ is the expected drift of the asset.
V is also shown above in Figure 8.12.

As we said earlier, when utility functions are involved we need to decide
what exactly we mean by successful.

The situations examined so far have been static. Either we have had an
opportunity to place a single trade/bet and see how it fares or we have
had the opportunity to invest in an asset with fixed drift and volatility. A
more realistic situation is one where the parameters we are interested in are
changing. In particular we have seen in Chapter 5 that implied volatility is
a mean-reverting process. Considering these situations leads to a seemingly
paradoxical situation.

Proebsting’s paradox is the counterintuitive result that application of the
Kelly criterion can seemingly lead to bankruptcy. As with most ‘‘paradoxes’’
this one can be resolved, but looking at the argument and its resolution
is nevertheless worthwhile. The situation was first pointed out by Todd
Proebsting in an e-mail to Edward Thorpe who wrote about it in Wilmott

Magazine (Thorpe 2008).
Imagine a situation where a gambler is offered a bet with a 50 percent

chance of winning. A win pays $2 and a loss loses $1. Equation 8.5 tells us
that the Kelly fraction is 0.25. Now, before the game is played, the bettor
is offered another bet on the same event. This one pays $5 if it wins and
still only can lose $1. We need to determine the fraction of bankroll, f, to
allocate to this new opportunity. After the bet is resolved the gambler’s
bankroll will either be 1.5 W0 + 5 f W0, if he wins, or 0.75 W0 − f W0 if he
loses. So we need to maximize

0.5 ln (1.5W0 + 5f W0) + 0.5 ln(0.75W0 + f W0) (8.40)

This gives f = 0.225.
So the total fraction (the total bet on first the 2/1 bet and then the 5/1

bet) is 0.425. The paradox is that if only the 5/1 bet was offered the Kelly
fraction would be 0.4. So application of the Kelly criterion leads us to be
more when some of the bet is at worse odds.

Even more alarmingly, if the gambler is offered better and better odds
he will eventually bet all of his money (in the limit). This gives him a
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100 percent chance of going bankrupt and was precisely the situation that
the Kelly criterion was designed to avoid.

Proebsting’s paradox is important because this situation occurs all the
time in trading. Prices change continuously and our edge (odds) fluctuates
accordingly. The most satisfactory resolution of the paradox was given by
Aaron Brown (also in an e-mail to Ed Thorpe). In a rare case of finance
theory illuminating a gambling issue rather than vice versa, Brown made
use of the idea of marking to market.

Specifically when the gambler is offered the 5/1 bet it means that on a
marked to market basis his 2/1 bet is a loser. That bet may not have settled
but it is still a loser as we can now get a better payoff for the same cost.
And, as any derivatives trader should know, it is the daily P/L that matters,
not what would happen if the trade was held until expiration. What is the
change in the gambler’s bankroll when the odds move from 2/1 to 5/1?
Alternatively, how much does he have to pay to get at the current market
price of 5/1, a bet that pays 2 for a win? This is the value of γ that satisfies

(2 − γ) = 5(1 + γ)

γ = −0.5

that is, entering a 2/1 bet for 0.25 of our bankroll and then having the odds
change to 5/1 is the same as not having bet, having the bankroll change by
−0.5 × 0.25W = −0.125W, and then betting at 5/1 odds.

Generally if we bet f X on a bet with a payout of X/1, then we get offered
Y/1 odds (where Y > B) the mark-to-market wealth (which we should use
to calculate the new betting fraction) is

W = 1 + x

1 + Y
W0 (8.41)

where x is the weighted average of the odds

x = f xX + (1 − f x)Y (8.42)

We will see that trading a mean-reverting process is similar. As the
deviations from fair value get larger we will do more of the trade. This leads
to the rule of thumb: When in trouble, double. But this is true only to a
point. In a continuous trading setting, as we get better and better prices we
will be losing money on the position we have already established. Eventually
these losses will have depleted our bankroll to the point where we actually
want to have a smaller position on. This is consistent with how market
makers are told to size their trades when they have things pushed against
them. The old rule would have a market maker sell 100 at his first level,
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then back up and sell 200 at the next level, back up again and sell 300 at
the next level. But if things get pushed further from ‘‘fair value’’ he would
start to buy the position back. This isn’t necessarily because his estimate of
what is fair might have changed (although by this point it probably will have
done) but because he has lost money and the short 600-lot position is too
large a function of his new account size.

We will set up a simple model that captures the basic features of what
we are trading, and try to generalize the Kelly argument. The simplest
mean-reverting model is the single parameter Ornstein-Uhlenbeck process,
governed completely by its speed of reversion, μ. Also let’s assume for
simplicity that we have normalized the underlying, S, so it has a mean of
zero and a standard deviation of one.

dS = −μSdt + √
2μdZ (8.43)

As with GBM these asset paths look very noisy and just looking at them
would be a very bad way to estimate the true reversion speed. Actually,
visual inspection wouldn’t even be enough to see that these were mean
reverting. For example, the three paths shown in Figure 8.13 all simulate
five years of daily prices with a reversion speed of 100 percent.

The optimal asset allocation for such a process has been studied
(Boguslavsky and Boguslavskaya 2004; Liu and Longstaff 2004). They
showed that if we try to generalize the Kelly approach and maximize the
expected value of the logarithm of wealth the solution is that we should
hold

−W × σ/2 (8.44)

in the asset.
So if we are risking $100 and the price of the asset is 1.8 standard

deviations from its mean (i.e., σ = 1.8) then we will have a short position
of 100 × 1.8/2 = 90. In practical terms this means we should have on a
position such that if the spread goes back to the mean we should make $90.

Figures 8.14 and 8.15 show the results of a ‘‘trading session’’ where we
size our trades according to this rule.

There are a number of important things to note about this deceptively
simple result.

■ Wealth is equally important as the attractiveness of the trade (σ and W

are interchangeable in the result).

■ The maximum position is at σ = 21/2. Beyond this the effect of losing
wealth dominates. The trades are now better but our bankroll is now also
smaller.

Sinclair, Euan. Volatility Trading, + Website, Wiley, 2013. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/miami/detail.action?docID=1157399.
Created from miami on 2017-12-06 07:11:10.

C
op

yr
ig

ht
 ©

 2
01

3.
 W

ile
y.

 A
ll 

rig
ht

s 
re

se
rv

ed
.



M
O

N
EY

M
A

N
A

G
EM

EN
T

156

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

(a)

−2

−1.5

−1

−0.5

0

0.5

1

1.5

(b)

−2

−1

−1.5

0.5
0

2

1.5

1

2.5

3

3.5

(c)

FIGURE 8.13 Three Different Instances of an Asset Path Generated by the Same
Mean-Reverting Process

■ At deviations smaller than 21/2, we add to trades as they go against us.
Here the extra edge in the trade dominates the fact that we are losing
money on our position.

■ This result is independent of the reversion speed. High reversion rates
are good, but only because we get to do more trades in the same period
of time.
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FIGURE 8.14 The Mean Reverting Asset Price
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FIGURE 8.15 The Wealth Generated by Trading According to Equation 8.44

As with all strategies that maximize the expectation of the logarithm of
wealth, this is an aggressive money management scheme. To some extent
this can be partially managed by careful choice of W0 (where we will apply
partial instead of full Kelly). But a further danger exists here. We have
assumed that the process is governed by an Ornstein-Uhlenbeck process
with normal innovations. The real processes we deal with in finance will
generally have fatter tails than implied by the normal distribution. Things
will not work so well in this case. Figures 8.16 and 8.17 show the results
of a trading session where the distribution is logistic rather than normal.
The important difference between this example and that of Figures 8.12
and 8.13 is that here we have an excess kurtosis of 9. The results are clearly
affected for the worse.

There doesn’t seem to be any published work on optimal positioning for
these types of processes, but some intuition can be gained by running some
simulations. Fat-tailed distributions also have thin middles. So in addition
to the larger proportion of large moves we can also expect more small
moves. This would seem to suggest that modifying the strategy by trading
more aggressively when entering looking for small moves then exiting
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FIGURE 8.17 The Wealth Generated by Trading According to Equation 8.44

more quickly when things move against us. Numerical experiments seem
to support this.

It is important to emphasize the dangerous game we are playing here.
This theory shows that when trading a mean-reverting process we should
(at first) add to our position as it goes against us. This clearly can be
dangerous. The danger has nothing to do with such unsupported rules as
‘‘only losers add to losers.’’ In fact, the theory shows that the optimal trading
rule in this instance is to add to losers. Further, this rule can be enunciated,
tested, and modified in a way that vague general assertions cannot. The real
danger is that the system may fundamentally change so that the ‘‘mean’’ we
will eventually revert to is totally different to the one we started with. This
is why we need to fundamentally evaluate why the initial trade has gone
against us. Imagine we are short a stock at 20 percent volatility because
we think the fair value is 13 percent. If it gets choppy because a few large
orders enter the market on an otherwise slow day and implied volatility
rises to 22 percent, we are probably justified in selling more. However,
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consider the example of InterOil Corporation (IOC). At 2 P.M. EST on June
26, 2007, huge sell orders hit the market and drove the stock price down
from $40.2 to $26.5. There was no news about the company on any of the
major news wires. July implied volatility jumped from about 94 percent
to 120 percent. In this case a fundamental revaluation of the company had
occurred. We have no news or analysis to consider and huge volume was
being transacted (6 million shares in an hour in a stock with an average daily
volume of 600,000). In this case to sell more volatility would be foolhardy
and irresponsible. So each case needs to be considered in context.

This is obviously an area where experience of a particular market can be
an asset. But there is a good way to use experience and a bad way. The
good way is to use your knowledge defensively. You should actively look
for things that are out of place with what you have seen in the past and then
be extra cautious. The bad way is to overfit to past data. If you have never
seen deviations as large before, that doesn’t necessarily mean that this is the
best trade you have ever done. This could well mean your past experience
is now irrelevant.

Selling a rising market and buying a falling market is the replication
strategy for a short option. In Chapter 4, we saw that forecast volatility
is generally below implied volatility. Part of the reason for this was that
in selling implied volatility we were selling insurance against events that
have never occurred before. That is also the case when scaling into any
mean-reverting asset. You have to be aware of this and be prepared to stop
scaling in, even when it can look better than it ever has before.

In practice, it will generally be difficult, or even impossible, to maintain
the perfect level of positioning. Illiquidity, transaction costs, noncontinuous
trading, position limits, and order entry restrictions mean that at best we
will need to use Equation 8.44 as a guide. It might also be helpful to have a
discrete rule to guide us in putting on the first portion of the position. Let’s
try a simple argument for maximizing our total profit given, that we have to
choose one point for entering the trade. This and other rules for selecting
entry points in mean reverting processes were covered in Vidyamurthy
(2004).

In this toy model we assume that the deviations of the asset price from
its mean value are normally distributed and independent. So at any time
we just draw a number from a normal distribution to find the deviation
and this is independent of the previous values. For a normally distributed
process, the probability at any time that we have deviated by more than S
from the mean is just the integral of the process. This is equal to 1 − N(S)
(where N [.] is the cumulative normal distribution function). So in, T, time
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steps we can expect to have T (1 − N(S)) times, where the asset price has a
deviation greater than or equal to S. The normal distribution is symmetric
so we have an equal number of times where the spread is less than or equal
to −S. So in T time steps, we will have traded 2T (1 − N(S)) times. Each
of these gives a profit of S. So the total profit is given by

2T S(1 − N(S)) (8.45)

To find the maximum of this function with respect to S, we differentiate
and set the result equal to zero. This gives the result

Smax = 0.75σ (8.46)

Figure 8.18 shows the shape of the theoretical distribution of the P/L as
a function of the entry level.

How different will trading a real process be? A true financial process will
differ from this ideal in three important ways.

1. The distribution will have fat tails.

2. There will be different behavior associated with declines and increases
(for example, the Volatility Index (VIX) is mean-reverting but is prone
to have larger moves up than down).

3. The standard deviation of the process will not be constant.

But rather than use a more complex model, we now look at trading a
mean-reverting product with various entry levels and see how the P/L varies
in practice. We simulate trading the VIX. We know this is a mean-reverting
process. Here we follow a simple Bollinger band rule. We buy or sell the
VIX after it has deviated by a certain amount from its moving average. As
can be seen, the deviation from the simple moving average is somewhat
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FIGURE 8.18 The Shape of the P/L Distribution as a Function of Entry Level

Sinclair, Euan. Volatility Trading, + Website, Wiley, 2013. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/miami/detail.action?docID=1157399.
Created from miami on 2017-12-06 07:11:10.

C
op

yr
ig

ht
 ©

 2
01

3.
 W

ile
y.

 A
ll 

rig
ht

s 
re

se
rv

ed
.



M
O

N
EY

M
A

N
A

G
EM

EN
T

161

0

20

40

60

80

100

120

140

3.532.521.510.50

SDs

P
/L

FIGURE 8.19 The Shape of the P/L Distribution for the VIX Trade

normal looking but clearly is fat tailed and skewed. We could address the
skewness issue by having different bands for buying and selling but that is not
the point of this exercise. This is not meant to be a realistic trading idea. It is
just intended to show that Equation 8.46 has some applicability to a situation
that we know does not follow the necessary simplifying assumptions.

We can see in Figure 8.19 that the peak of the P/L function is close to
the theoretical point of 0.75 standard deviations. So aggressively scalping
can produce more profits. But note that the left-hand end of the curve tails
off much faster so it is probably safer to err on the side of caution and trade
slightly less often than optimal.

■ Summary

Although trade sizing can’t turn a losing trade into a winning one, our
choices still have a significant impact on our profitability, variance, and
drawdowns. It is important that our sizing scheme and parameters are
established before we start trading, and then only adjusted after very careful
consideration. It is easy to overreact to atypically good or bad runs of
results.

■ Before you can choose a money management scheme you must be clear
what you are trying to accomplish. Your monetary goals, time constraints,
and maximum tolerable drawdowns need to be fully specified in advance.

■ When there is more edge, trade bigger.

■ When there is more variance or uncertainty, trade smaller.
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■ The Kelly scheme will eventually overwhelm all others.

■ The Browne scheme is useful for hitting specific targets.

■ When trading volatility we have to be prepared to do more as a trade
initially goes against us.

■ Adding arbitrary price based stops to a trading system is a poor idea.
We should exit our trades when we are wrong. Having volatility move
against us may not indicate that we are wrong at all.

■ A good rule of thumb is that a trade should be big enough that the profits
mean something, but not so big that the losses are catastrophic. If this
optimum size can’t be found, the trade probably doesn’t have enough
edge to begin with.
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