Proof for 2-SAT

Burton Rosenberg

May 17, 2004

Let $\mathcal{C}=\left\{c_{i}\right\}$ be a finite set of clauses, each c_{i} being of the form $\left(\gamma_{1} \vee \gamma_{2} \vee \ldots \vee \gamma_{k}\right)$, with each γ_{j} being either v or $\neg v$ for some variable v in the set of variables V. The form of 2-SAT is when each clause has at most two variables or negation of variables. The satisfaction of a set of clauses as an assignment of true values to each variable such that every clause yields true.

Lemma 1 For a SAT instance \mathcal{C}, V and a satisfying assignment, for any $\mathcal{C}^{\prime} \subset \mathcal{C}$, the assignment also satisfies \mathcal{C}^{\prime}.

The basic procedure is to chose a variable among those appearing in \mathcal{C} and assigning it a value, then simplify the set of clauses by the consequence of this assignment.

1. If the variable v is set true, remove all clauses which contain v. If v is set false, remove all clauses which contain $\neg v$.
2. If the variable v is set true and a clause contains $\neg v$, remove the variable from the clause. Likewise, if v is set false and a clause contains v, remove the variable from the clause.
3. Inspect the resulting set of clauses for obvious contradictions: a pair of clauses of the form (x) and $(\neg x)$. If such a contradiction occurs the basic procedure rejects.
4. Else repeatedly remove clauses with a single variable by assigning the appropriate value to the variable and doing the above simplifications. If the variable appears in the affirmative, set it true; if the variable appears negated, set it false.
5. Repeat this until either the procedure rejects; or the procedure leaves no clauses, in which case the procedure succeeds; or no clause has a single variable.

In the case of 2-SAT this procedure makes terrific headway, and is the basic algorithm to find a satisfying assignment.

Notation: Let \mathcal{A} be a set of variable, value assignments. The basic procedure begins by inserting $v=T$ or $v=F$ into \mathcal{A}, and additional assignments are made. The result of the procedure is a set of clauses $\mathcal{C}^{\prime} \subset \mathcal{C}$ after assignment and simplification, which is denoted $\left.\mathcal{C}\right|_{\mathcal{A}}$.

Lemma 2 Let \mathcal{C}, V be an instance of 2-SAT, and \mathcal{A} the result of the basic procedure. One of three cases holds:

1. If the basic procedure rejects starting from both $\mathcal{A}=\{v=T\}$ and $\mathcal{A}=\{v=F\}$. Then \mathcal{C} is not satisfiable.
2. If the basic procedure succeed, that is $\left.\mathcal{C}\right|_{\mathcal{A}}$ is empty. Then \mathcal{C} is satisfiable and \mathcal{A} is a satisfying assignment.
3. If the procedure ends with a reduced set of clauses $\mathcal{C}^{\prime} \subset \mathcal{C}$, then \mathcal{C} is satisfiable if and only if \mathcal{C}^{\prime} is satisfiable. Furthermore, if \mathcal{A}^{\prime} is an satisfying assignment for \mathcal{C}^{\prime} then $\mathcal{A} \cup \mathcal{A}^{\prime}$ is a satisfying assignment for \mathcal{C}.

Proof: All fairly obvious. The key point in the third case is that \mathcal{C}^{\prime} contains no variables assigned in \mathcal{C}, so that you are free to splice together the assignment satisfying \mathcal{C}^{\prime} with the already determined values listed in \mathcal{A}. If there is any satisfying assignment for \mathcal{C}, that assignment restricted to the variables found in \mathcal{C}^{\prime} is a sufficient \mathcal{A}^{\prime}. On the other hand, if \mathcal{C}^{\prime} is not satisfiable, then \mathcal{C} is not satisfiable regardless of the procedure by which we selected the subset \mathcal{C}^{\prime}.

Problem 6.3.3 in Lewis and Papadimitriou suggest the following exercise. Encode 2-SAT as a directed graph. The vertex set is a pair of nodes for each variable, one to represent the variable in the affirmative, the other for the negation. For each clause $x \vee y$ (since logically $\neg x \Rightarrow y$ and $\neg y \Rightarrow x$) direct an edge from $\neg x$ to y and another from $\neg y$ to x.

Lemma 3 (Problem 6.3.3., L. and P.) The instance \mathcal{C}, V of 2-SAT is not satisfiable if and only if there exists an $v \in V$ such that in the directed graph there is a path from v to $\neg v$ and from $\neg v$ to v.

Proof: (Only if) We follow the basic procedure until we discover \mathcal{C} is not satisfiable. Hence the basic procedure beginning from $v=T$ rejects, as it does beginning with $v=F$. Suppose for $v=T$ it rejects because both x and $\neg x$ are resulting clauses. Following the procedure and interpreting in the graph, these eliminations demonstrate paths,

$$
\begin{gathered}
v \Rightarrow \ldots \Rightarrow x \\
v \Rightarrow \ldots \Rightarrow \neg x
\end{gathered}
$$

The contrapositive paths are also available. In particular there is a path,

$$
v \Rightarrow \ldots \Rightarrow x \Rightarrow \ldots \Rightarrow \neg v .
$$

Likewise, for $v=F$ there is a variable y for which,

$$
\neg v \Rightarrow \ldots \Rightarrow y \Rightarrow \ldots \Rightarrow v
$$

Hence we have the required pair of paths.

