
Proof for 2-SAT

Burton Rosenberg

May 17, 2004

Let C = { ci } be a finite set of clauses, each ci being of the form (γ1 ∨ γ2 ∨ . . . ∨ γk), with each γj

being either v or ¬v for some variable v in the set of variables V . The form of 2-SAT is when each
clause has at most two variables or negation of variables. The satisfaction of a set of clauses as an
assignment of true values to each variable such that every clause yields true.

Lemma 1 For a SAT instance C, V and a satisfying assignment, for any C′ ⊂ C, the assignment
also satisfies C′.

The basic procedure is to chose a variable among those appearing in C and assigning it a value,
then simplify the set of clauses by the consequence of this assignment.

1. If the variable v is set true, remove all clauses which contain v. If v is set false, remove all
clauses which contain ¬v.

2. If the variable v is set true and a clause contains ¬v, remove the variable from the clause.
Likewise, if v is set false and a clause contains v, remove the variable from the clause.

3. Inspect the resulting set of clauses for obvious contradictions: a pair of clauses of the form
(x) and (¬x). If such a contradiction occurs the basic procedure rejects.

4. Else repeatedly remove clauses with a single variable by assigning the appropriate value to
the variable and doing the above simplifications. If the variable appears in the affirmative,
set it true; if the variable appears negated, set it false.

5. Repeat this until either the procedure rejects; or the procedure leaves no clauses, in which
case the procedure succeeds; or no clause has a single variable.

In the case of 2-SAT this procedure makes terrific headway, and is the basic algorithm to find a
satisfying assignment.

Notation: Let A be a set of variable, value assignments. The basic procedure begins by inserting
v = T or v = F into A, and additional assignments are made. The result of the procedure is a set
of clauses C′ ⊂ C after assignment and simplification, which is denoted C|A.

1



Lemma 2 Let C, V be an instance of 2-SAT, and A the result of the basic procedure. One of three
cases holds:

1. If the basic procedure rejects starting from both A = { v = T } and A = { v = F }. Then C is
not satisfiable.

2. If the basic procedure succeed, that is C|A is empty. Then C is satisfiable and A is a satisfying
assignment.

3. If the procedure ends with a reduced set of clauses C′ ⊂ C, then C is satisfiable if and only if C′
is satisfiable. Furthermore, if A′ is an satisfying assignment for C′ then A∪A′ is a satisfying
assignment for C.

Proof: All fairly obvious. The key point in the third case is that C′ contains no variables assigned in
C, so that you are free to splice together the assignment satisfying C′ with the already determined
values listed in A. If there is any satisfying assignment for C, that assignment restricted to the
variables found in C′ is a sufficient A′. On the other hand, if C′ is not satisfiable, then C is not
satisfiable regardless of the procedure by which we selected the subset C′.

Problem 6.3.3 in Lewis and Papadimitriou suggest the following exercise. Encode 2-SAT as a
directed graph. The vertex set is a pair of nodes for each variable, one to represent the variable
in the affirmative, the other for the negation. For each clause x ∨ y (since logically ¬x ⇒ y and
¬y ⇒ x) direct an edge from ¬x to y and another from ¬y to x.

Lemma 3 (Problem 6.3.3., L. and P.) The instance C, V of 2-SAT is not satisfiable if and only
if there exists an v ∈ V such that in the directed graph there is a path from v to ¬v and from ¬v to
v.

Proof: (Only if) We follow the basic procedure until we discover C is not satisfiable. Hence the
basic procedure beginning from v = T rejects, as it does beginning with v = F . Suppose for v = T
it rejects because both x and ¬x are resulting clauses. Following the procedure and interpreting in
the graph, these eliminations demonstrate paths,

v ⇒ . . . ⇒ x

v ⇒ . . . ⇒ ¬x

The contrapositive paths are also available. In particular there is a path,

v ⇒ . . . ⇒ x ⇒ . . . ⇒ ¬v.

Likewise, for v = F there is a variable y for which,

¬v ⇒ . . . ⇒ y ⇒ . . . ⇒ v.

Hence we have the required pair of paths.

2


