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5.7.1: Show L R.E. iff exists NTM M, L = {w : w output on empty tape }.

If L is R.E. there is a TM M’ which Turing enumerates L. The NTM M non-deterministically
decides whether to halt when M’ enters the special enumerator state. All and only w € L can
appear as the result of M.

In the other direction, given M as described we have to “rephrase” the computation according to
some accepted definition of R.E.. Let M’ enumerate all hints to M, and simulate M on each hint.
At the end of the hint, if M is halted then M’ enters the special state, else it does not. In any case
it continues to the next hint. Therefore M’ Turing enumerates L.

5.7.3.: Assume L C ¥*;X* is R.E. Let L' = {z € ¥* : x;y € L, for some y € ¥* }. Show L is R.E.
Let M Turing enumerate L. Construct M’ to Turing enumerate L’ as follows. M’ lets M run.
When M enters the special state with x;y on the tape, M’ copies z to its tape and enters its special
state.

(b) No, L can be recursive while L’ R.E. For instance, x;y could be that y is an accepting com-
putation of a TM M’ on input . This is recursive (you can verify a computation correct without
“magic”). However L’ would be the language of M’, which could be R.E.

6.1.1.: Show P-time is closed by union, intersection and concatenation.

Let M; be a P-time TM accepting L;, for i =1, 2.

To accept L = Ly U Lo, try M;(z) and My (x) and accept if either does. The time is the sum of the
individual times, hence polynomial.

For intersection, accept only if both do. Again, the time is the sum of the individual times, hence
polynomial.

For concatentation, try all possible decompositions of = as z1 and z2, accepting if Mj(x1) and
My (x2) both accept. The time is |z|(fi(|z|) + f2(]z]), hence polynomial.



6.2.1.: A graph is Eulerian iff it is connected and every vertex has out-degree equal to in-degree.
It is clear that if the connected and degree requirements are not met, there can be no tour.
Suppose the conditions are met. Take any vertex and begin to travel. Since out-degree equals
in-degree you can always take another step. Eventually you will repeat a vertex for the first time.
Consider the circuit C created when this path first closes. Remove the edges on C from the graph.
By induction get a Eulerian tour E of the remaining edges. Since the graph is connected, if there
are any edges remaining after the removal of the edges of C then some vertex on C must have
in-degree greater than one — hence E and C intersect. Surgery the two paths together.

6.2.3.: Find a solution the the Traveling Salesman problem on the given 5 city dataset.

A, C, B, E, D for 13. The tour goes from D to A and is 18.

6.2.5. Given the graph, you show a Hamiltonian cycle, a max clique (of 3), an Independent set (of
size 10), and a node cover (of size 12). For full credit you should show them.

6.3.1.: Show all satisfying assignments for,

(:Bl V —x9 V $3), (—\xl V .%'4), ($2 V —x3 V —|$4)

There are eight:

ol Bl e e IS IS I sy
AR 8
HEmEaE"E 38
mHAETE a8 AE

6.3.3.: Proof of 2-SAT in P-time using reachability in graphs.

See separate write-up.

6.4.1.: Show NP is closed by union, intersection, concatentaion and Kleene star.
Let L; be recognized by NTM M; in P-time, ¢ = 1, 2.

The machine recognizing L; U Lo takes two hints and runs M; and Ms on the input and the hints,
accepting if either does.

The machine recognizing L1 N Lo akes two hints and runs M; and M5 on the input and the hints,
accepting if both do.



The machine recognizing LioLs takes three hints 41, 2, y3, uses the first to parse the input x = x1z9,
and the second two to run M (x1,y2) and Msy(z2,ys), accepting if both do.

The machine recognizing L} takes a various number of hints y,y2, ..., yk+1, uses the first to parse
the input x = z1x3 . .. xg, and the rest to verify membership M (z;,y;11) fori = 1,..., k, accepting
if all sub-computations do.

The time complexity of all these constructions is bound by the sum of the complexities of the M;
plus some overhead linear in |z|, except for Kleene star which requires at most |z| repetitions of
M;. In all cases, this is polynomial in |x|.

7.1.1.: Show 3-COLOR is in NP and give a P-time reduction to SAT.

To show 3-COLOR is in NP we can be given a coloring and check if it is correct. This requires
looking at each edge and checking that the endpoints are different colors. This is linear in the input
size (number of edges in the graph).

Reduction to SAT: we need to write down a SAT equation which is satisfied if and only if the given
graph is 3-colorable. For every node v; in the graph, we have three variables v;1, v;o, v;3. Exactly
one is true and represents the color of the node. These clauses assure exactly one is true:

(Vi1 V iz V 033), (031 V —042), (—vi2 V 1wig), (—win V w3)

for all ¢ such that v; is a vertex. For each vertex this generates a constant times the size needed to
represent a variable and can be done in a linear time scan of the input. For every edge we check
that the endpoints have different colors.

(—vi1 V 2wjn), (Fvie V wj2), (i3 V —043),

for all ¢, j such that (v;,v;) is an edge in the graph. For every edge this generates a constant times
the size needed to represent a variable and can be done in a linear time scan of the input.

Suppose there is a 3-coloring. Setting v;; true if node 7 is color k, and false otherwise, we have
satisfied the clauses. Conversely, if the clauses are satisfied, for all i exactly one k has v;; true, and
it can be the color of node 1.



7.3.1.: Show that EXACT-COVER remains NP complete when restricted so that no covering set
has more than 3 elements, and that no element is in more than 3 covering sets.

We transform a general instance so that it conforms to the restricted version. We first transform
the covering sets. Let a cover ¢ = {wuy,...,u; } where k > 3. We create a whole bunch of subsets
which chain together small subsets so that they all must be taken or none take, reproducing the
effect of c¢. Introduce elements z;,y;, z; for i = 1,..., k. The new sets replacing c are.

{yi, wit, {zi, ziv 1} {1} {2}

and also

{2i, v, 21}
The point of this is that either c is taken or not in the original. If it is than all of the u; are covered,
else none are covered. It is possible to take all the sets {y;, u;} and cover the remaining x; and y;
with the other sets; it is also possible to take none of the {y;,u;} and cover all the z;,y;, z; with
the sets {x;, i, z;}. It not possible however to take some of the {y;,u;} and not others. It is all or
nothing.

It is possible to modify this construction. Instead of {y;,u;} use sets {y;,u;,u,} so that some
widgets cover two elements of c. Here is an example,

+o——t———+ +o——t———+ +o——t———+
L [ I
x1 y1 zl ———-—- X2 y2 z2 -———- x3 y3 z3
I I I
+——t——+ +-—+——+ ub
I I I I
ul u2 u3 ué

Not shown are the singleton sets {z1} and {z3}.

Replacing every covering set with this construction we have an equivalent problem but no set has
more than three elements. Formally, we have a reduction that for every ¢ writes out a collection
of sets. Their is an exact cover to the original problem if and only if there is an exact cover to the
rewritten problem.



We next transform a general instance of exact cover so that no element appears in more than 3
covers. To do this we create a family of sets which cover elements so that among the w1, ..., ug
elements exactly one is uncovered. Any element u in more than 3 covers is replaced by this
construction, replacing a use of v with a use of u;.

The construction addes elements and covers. The covers have 2 elements each, so you could draw
the construction as a graph and a cover as an edge cover. Create elements u;, v;, w; fori =1,...,k
and glue elements g; for ¢ = 1,...,k — 1. The covers are,

1. {wi,v;} and {v;,w;} fori=1,... k,
2. {w;,g;} fori=1,...,k—1,

3. and {g;—1,w;} for i =2,... k.

Here is an example,

wl ————- gl ——-—- w2 ———-- g2 ———-- w3 ————-— g3 ———-- w4
I I I I
vl v2 v3 v
I I I I
ul u2 u3 ué

To cover all glue elements ¢g; k edges must be included from the backbone, leaving exactly one w;
uncovered. This is covered by the edge to the corresponding v; and w; is uncovered. The remaining
v; are covered by edges to u; so these are not available for covering by the cover in which the u; is
used.

(b) We can consider what happens when the restriction is to 2 elements in a cover, or 2 uses of the
elements in any cover.

If |e| < 2 for all covers ¢, the result covers can be represented as edges in a graph. We are looking
for a collection of edges of minimum size such that each vertex is covered by the selected edge set
exactly once. This problem is called EDGE COVERING, and is in P.

If there can be at most two ¢; such that any « is in these ¢;, then the problem can be reduced to 2-
SAT and is therefore P-time. The reduction is fairly direct. Each cover is represented by a variable
and is true if the cover is taken. Clauses express when two covers cannot be taken simultaneously.
If ¢; and c; intersect than (—¢; V —\cj) forces that both variables ¢; and ¢; cannot be true. The
condition for covering is that if u € ¢1,ca then (¢; V ¢2). It is here we use the 2 condition to get
2-SAT.

There is an interested duality in our constructions. To reduce the size of cover sets we used a
construction which required sets of size 3 but no element was in more than 2 covers. To reduce the
number of covers which a set was in we used a construction that required sets of size 2 but some
elements are in 3 sets.



7.3.3.: Show that HAM-PATH is NP complete, and that HAM PATH SPEC VERTICES is NP
complete.

We do this with one construction with a reduction from HAM CYCLE. Showing that HAM PATH
is in NP is easy.

Given an instance of HAM CYCLE we modify the graph so that the new graph has a HAM PATH
if and only if the original had a HAM CYCLE. Create a sink vertex sy and a source vertex sj.
Every edge (z,y) is subdivided by two new vertices u and v into (x,u), (u,v), (v,y). Add edges
(u, s0) and (s1,v). The HAM CYCLE is now a path by replacing exactly one step of the cycle by
a route to the sink and from the source. That is, if the original graph used (z,y) in the cycle than
the new graph uses (x,u), (u, sp) as the end of the path and (s1,v), (v,y) as the start of the path.

Conversely, if there is a HAM CYCLE in the new graph, it must start at s; and end at sqg. If 51
goes to v the only way to cover u is to have u go to sg. so (z,u) and (v,y) are in the path. These
can be replaced by (z,y) in the original to get a cycle.

This construction might triple the size of the graph: every edge introduces two new vertices. But
no matter, it is still polynomial.

7.3.5.: Show that IND SET is NP complete even if K is fixed to [n/2].

We transform a general instance of IND SET so that there are always enough independent vertices
“given for free” so that K needn’t be small.

Given a graph G and a bound K, add a set of vertices V with no incident edges. In the new graph
G’ all the V are in the IND SET, so that the problem is the same in G’ if K’ = K + |V|. We set
this equal to [n/2], where n = |G| + |V]. So |V| = |G| — 2K.



