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Abstract

We study a class of single-round, sealed-bid auctions for items in unlimited supply, such
as digital goods. We introduce the notion of competitive auctions. A competitive auction is
truthful (i.e., encourages buyers to bid their utility) and yields profit that is roughly within a
constant factor of the profit of optimal fixed pricing for all inputs. We justify the use of optimal
fixed pricing as a benchmark for evaluating competitive auction profit. We show that several
randomized auctions are truthful and competitive and that no truthful deterministic auction is
competitive. Our results extend to bounded supply markets, for which we also get truthful and
competitive auctions.
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1 Introduction

A combination of recent economic and computational trends, such as the negligible cost of du-

plicating digital goods and, most importantly, the emergence of the Internet as one of the most

important arenas for resource sharing between parties with diverse and selfish interests, has created

a number of new and interesting dynamic pricing problems. It has also cast new light on more

traditional problems such as the problem of profit optimization for the seller in an auction. We

focus the design and analysis of truthful, a.k.a., incentive compatible or strategy-proof, auctions

that perform well in worst case in the presence of unknown market conditions.

The traditional economics approach to the study of profit-maximizing auctions is to construct

the optimal Bayesian auction given the prior distribution from which the bidders’ utility values, the

maximum values that they are willing to pay, are drawn. This has led to a number of interesting

results including the use of the Vickrey-Clarke-Groves selling mechanism [4, 8, 14] parameterized

by a reservation price that is adjusted to reflect the seller’s knowledge of the prior distributions

[3, 11]. These results often include very tight bounds on the expected revenue.

In contrast, we focus on the design of unparameterized auctions for profit maximization in

unknown markets, i.e., when Bayesian priors are not known.1 There are a number of compelling

reasons for considering profit maximization from this perspective. In order to use a Bayesian

optimal auction the prior distribution, or at least a reasonable approximation thereof, must be

ascertained in advance. In some cases, determining the prior distribution in advance may not be

convenient or possible. Moreover, even if prior distributions are known, when many auctions are

to be run, computing and setting a new reservation price for each one may be inconvenient or

infeasible.

The study of profit maximizing auctions for unknown markets provides understanding for auc-

tion problems where the seller has incomplete knowledge of the distribution of bidder valuations.

We can determine how well an uninformed mechanism can perform. We can get a quantitative

understanding of the relative value of being informed. A partially informed auctioneer choosing an

auction mechanism has to consider the trade-off between using an auction tailored to assumptions

about bidder valuations that may or may not be correct versus using an auction designed to work

as well as possible under unknown market conditions.

Worst case analysis is the only way to give provable performance guarantees in the presence of

total uncertainty. As such, we will use worst case analysis to measure the performance of uninformed

auctions. We will show that it is possible to obtain optimal performance, to within a multiplicative

constant factor, even under arbitrary, unknown and worst-case market conditions.

In the case where the auctioneer has partial information on possible inputs, it is possible to

tailor the analysis and prove better bounds than are possible in the worst case over all possible

inputs. As an example, we consider the performance of our auctions in the mass market case,

where the auctioneer expects to sell many items. In this case, we give an analysis of our auctions

for the worst input over a practical restriction of bidders’ valuations that is relevant to mass market

1In the literature, such auctions are sometimes called detail-free auctions.
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sales. Similarly, though we do not provide the analysis in this paper, a Bayesian analysis of our

auctions could be performed to obtain tighter bounds for the Bayesian setting. An ideal auction

has good performance in worst case and a better performance when the inputs come from specific

prior distributions.

To analyze auction performance without making assumptions about the prior input distribution,

a criterion is needed for gauging auction revenues. Our approach is motivated by competitive

analysis of on-line algorithms [2, 13], where the performance of an on-line algorithm, one that must

make decisions without knowledge of the future, is compared to the performance of an optimal

off-line algorithm that knows the future. The assumption that the on-line algorithm not know

the future in advance is analogous to the assumption that auctions not know the bidders’ values

in advance. We gauge a truthful auction’s performance on a particular bid set by comparing it

against the profit that would be achieved by an “optimal” omniscient auction, one that knows the

bids in advance, on the same set of bids. An auction is competitive if it achieves a profit that is a

constant fraction of optimal on every input.

In this paper, we focus on the case where the auctioneer has an unlimited number of indivisible

items available to sell, each consumer wants at most one item, and the auctioneer has no value

for the items. We use the term unlimited supply to describe this supply curve. This unlimited

supply case is natural for the sale of digital goods where there is negligible cost for duplicating and

distributing the good. Pay-per-view television and downloadable audio files are examples of such

goods. All of our results generalize naturally to the bounded supply case where the auctioneer has

a limited number of items to sell (fewer than the number of bidders). Adhering to the revelation

principle [11], we will restrict our attention to single-round, sealed-bid, truthful auction mechanisms.

In truthful auctions, truth-telling, i.e, revealing their true utility value as their bid, is a dominant

strategy for each bidder.

The rest of the paper is organized as follows. In Section 2 we formally define auction mecha-

nisms and the bidder model. We also review an algorithmic characterization of deterministic and

randomized truthful mechanisms.

In Section 3 we describe the basics of competitive analysis and motivate the its use for auction

problems by contrasting it to Bayesian analysis. We also discuss in detail the competitive framework

that we will be using in this paper for both the worst case and mass market case.

In Section 4 we show that no deterministic auction has good worst case performance. This

motivates the use of randomized auction mechanisms. In Section 5 we give a bound on how well

any auction can perform in worst case. We give two randomized competitive auctions in Section 6

and prove that they perform well in worst case. The first auction uses the optimal price for a random

sample of the bids as the sale price for the remaining bids, i.e., does market analysis on the sample.

Indeed, we will show that for mass markets, this auction obtains a near optimal profit. Moreover,

it is performs within a constant factor of optimal in our worst case competitive framework. The

second auction we introduce is based on a standard cost sharing mechanism. Analysis of this

auction is much simpler than the first and its worst case performance is much better.

In Section 7 we discuss the extension of the results for unlimited supply to the limited supply
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case where there are fewer items for sale than bidders. In Section 8 we discuss a natural subclass

of auctions for profit maximization which includes all of our auctions. We conclude in Section 9.

2 Preliminaries and Notation

We consider single-round, sealed-bid auctions for a set of identical items available in unlimited

supply.

Definition 2.1 A single-round sealed-bid auction, A, is one where:

1. Each bidder submits a bid, representing the maximum amount they are willing to pay for an

item. We denote by b the vector of all submitted bids, i.e., the input. The i-th component of

b is bi, the bid submitted by bidder i. We denote by n the number of bidders.

2. Given the bid vector b, the auctioneer computes an output consisting of an allocation, x =

(x1, . . . , xn), and prices, p = (p1, . . . , pn). The allocation xi is an indicator for bidder i’s

receipt of the item (1 if bidder i receives the item and 0 otherwise). If xi = 1, we say that

bidder i wins. Otherwise, bidder i loses, or is rejected. The price, pi, is what bidder i pays

the auctioneer. We assume that 0 ≤ pi ≤ bi for all winning bidders and that pi = 0 for

all losing bidders (these are the standard assumptions of no positive transfers and voluntary

participation. See, e.g., [10]).

3. The profit of the auction (or auctioneer) is A(b) =
∑

i pi.

We say that an auction is deterministic if the allocation and prices are completely determined as

a function of the bid vector. We say that the auction is randomized if the procedure by which the

auctioneer computes the allocation and prices is randomized. Note that if the auction is randomized,

the profit of the auction, the output prices, and the allocation are random variables.

We make the following assumptions about bidders:

• Each bidder has a private utility value, representing the true maximum they are willing to

pay for an item. We denote by ui bidder i’s utility value.

• Each bidder bids so as to maximize their profit, uixi − pi.

• Bidders bid with full knowledge of the auctioneer’s mechanism.

• Bidders do not collude.

• The bidders in the auction are indistinguishable from the perspective of the auctioneer. Thus,

the auctioneer cannot perform any knowledgeable market segmentation.

Finally, we formally define the notion of truthfulness.

Definition 2.2 We say that a deterministic auction is truthful if, for each bidder i and any choice

of bid values for all other bidders, bidder i’s profit is maximized by bidding their utility value, i.e.,

by setting bi = ui.
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Thus, we consider an ex post notion of truthfulness with respect to bidders strategies. Truthful

auctions encourage rational bidders to bid their utility value if the bid value that maximizes their

profit is unique. If the bid value is not unique, truthfulness at least does not discourage bidders

from bidding their utility value.

For randomized auctions, one natural approach is to say that an auction is truthful if bid-

ding utility maximizes a bidder’s expected profit. We use another natural, but stronger notion of

truthfulness that allows us to take advantage of a particularly useful characterization of truthful

auctions, discussed in Section 2.1. We require randomized auctions to be truthful ex post with

respect to the randomness in the mechanism.

Definition 2.3 A randomized auction is truthful if it can be described as a probability distribution

over deterministic truthful auctions.

Clearly, with this notion of truthfulness, the probability that a bidder’s profit exceeds v is simulta-

neously maximized for every v by bidding truthfully.

Henceforth we will consider only truthful auctions. As bidding ui is a dominant strategy for

bidder i in a truthful auction, in the remainder of this paper, we assume that bi = ui.

2.1 Bid-Independent Auctions

Intuitively, if a price a bidder gets in an auction is independent of the bidder’s bid value, the

auction is truthful. Bid-independent auctions formalize this observation and give a characterization

of truthful auctions. Various communities have formulations of this characterization. However, as

we rely heavily upon this result, we give an elementary proof.

We begin by formalizing the notion of bid-independence. Let b−i denote the vector of bids

b with bi removed, i.e., b−i = (b1, . . . , bi−1, ?, bi+1, . . . , bn). We call such a vector masked. Let f

be a function from masked vectors to prices (non-negative real numbers) The deterministic bid-

independent auction defined by f is Af (Auction 1).

Auction 1 Bid-independent Auction: Af (b)

For each bidder i:

1. ti ← f(b−i).

2. If ti ≤ bi, set xi ← 1 and pi ← ti. (Bidder i wins.)

3. Otherwise, set xi = pi = 0. (In this case, we say that bidder i is rejected.)

In step 2 above, as the proof of Theorem 2.4 shows, bid-independence allows the inequality, ti ≤ bi,
to be strict or non-strict at the discretion of f(b−i). Thus f can specify whether to accept bi at
price ti if bi is in (ti,∞) or [ti,∞).

For example, by setting f = max for all i and breaking ties arbitrarily, we obtain the 1-item

Vickrey auction, in which the highest bidder wins at the second highest price. Similarly, if f is the

function that returns the k-th highest bid, we get the k-item Vickrey auction.
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Theorem 2.4 A deterministic auction is truthful if and only if it is equivalent to a deterministic

bid-independent auction.

The theorem follows from the following two lemmas.

Lemma 2.5 Any deterministic bid-independent auction is truthful.

Proof. Consider the auction outcome for bidder i. If they bid at least ti they win and pay ti;

otherwise they lose. If their utility is below ti, there is no way they can win and have a positive

profit. If ui ≥ ti, then any bid of at least ti allows them to win the auction and pay ti; bidding

below ti would cause them to lose. Thus, for any utility value and any ti, bidding ui maximizes

the bidder i’s profit.

The following result completes the proof of equivalence of truthfulness and bid-independence

for deterministic auctions.

Lemma 2.6 Any truthful deterministic auction is equivalent to a deterministic bid-independent

auction.

Proof. Given any truthful deterministic A we can determine an f such that the bid-independent

implementation, Af , is identical to A. Let bx
i = (b1, . . . , bi−1, x, bi+1, . . . , bn), the bid vector ob-

tained by replacing bi with x. If there is some value x∗ such that in A(bx∗

i ) bidder i wins and pays

p (note this requires p ≤ x∗) then define f(b−i) to be p. f(b−i) uses a closed interval [p,∞) for

winners if A(bp
i ) = p and an open interval otherwise.

Give this value of p, we now show for A(bx
i ) that:

1. If bidder i wins, he pays p.

2. Bidder i wins by bidding any value x > p (and possibly by bidding x = p).

To see 1, assume to the contrary that there is some other bid value y such that running A(by
i )

results in bidder i winning and paying q 6= p. Without loss of generality q > p so a bidder with

utility y would have a higher profit by bidding x∗. This contradicts A’s truthfulness.

To see 2, assume to the contrary that there is some bid value y ∈ (p,∞) such that bidder i does

not win by bidding y. Notice that a bidder with utility y would have a higher profit by bidding x∗.

Again this contradicts the A’s truthfulness and gives the lemma.

Definition 2.7 A randomized bid-independent auction is a probability distribution over bid-independent

auctions. For these auctions, f(b−i) is a non-negative real-valued random variable.

Note that the random variables f(b−i) and f(b−j) need not be independent. It follows immediately

from this definition, Definition 2.3, and Theorem 2.4 that:

Corollary 2.8 A randomized auction is truthful if and only if it is equivalent to a randomized

bid-independent auction.
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2.2 Optimal Omniscient Auctions

In our discussions to follow, it will be useful to compare the performance of truthful auctions to

that of the optimal single price and the optimal multiple-price omniscient auctions.

Definition 2.9 The optimal single price omniscient auction, F , is defined as follows: Let b be a

bid vector, and let vi be the i-th largest bid in b. Auction F on input b determines the value k

such that kvk is maximized. All bidders with bi ≥ vk win at price vk; all remaining bidders lose.

The profit of F on input b is thus

F(b) = max
1≤i≤n

ivi.

Definition 2.10 The optimal multiple price omniscient auction, T , is the auction that sells to

each bidder at his bid value. Thus, the profit of T on input b is

T (b) =
∑

1≤i≤n

bi.

3 Competitive Analysis

The goal of this section is to motivate and explain the application of worst-case competitive analysis

to auctions. We begin with an example of an auction that performs well under a Bayesian analysis.

Then we show that under worst-case analysis, the same auction does poorly. Finally, we describe

how competitive analysis can be used to give stronger results.

We begin by considering a natural truthful auction, the deterministic optimal threshold (DOT)

auction. To define DOT, we introduce the notion of the optimal sale price for a set of bids.

Definition 3.1 Let b be a vector of bids. Denote by opt(b) the sale price for b that gives the

optimal profit, i.e.,

opt(b) = argmaxvi
ivi,

where vi is the i-th largest bid in b.

DOT is the truthful auction defined as follows:

Definition 3.2 The deterministic optimal threshold (DOT) auction is defined by the bid indepen-

dent function f :

f(b−i) = opt(b−i).

In other words, DOT uses for each bid bi the optimal sale price for the remaining bids b−i.

Note that the optimal price for b could be the same as the optimal price for b−i but in general

this is not the case. The following lemma is not difficult to prove.

Lemma 3.3 Assume that the bids in b are i.i.d. from any bounded support probability distribution.

Then, as the number of bidders tends to infinity, the profit of the DOT auction converges to the

optimal profit.
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Thus, DOT is a profit maximizing auction for a large class of distributions over bid vectors:

any bounded support i.i.d. distribution. However, it is also easy to exhibit classes of bid vectors

where DOT’s profit is very far from optimal.

For example, consider n bidders where n/b of them bid b≫ 1 and the remaining bidders bid 1.

Running DOT on this bid vector will result in the following: For a bid at value b, we remove it and

compute opt of the remaining bids. Of the n − 1 bids remaining n/b − 1 of them are at b. Thus,

opt outputs 1 as n− 1 bids at price 1 gives a higher revenue than n/b− 1 bids at price b. Similarly

for a bid at value 1, we remove it and compute opt of the remaining bids. Of the n − 1 of them,

there are n/b of them at b, the rest at 1. Thus, opt chooses to output b because n/b bids at price b

gives a higher revenue than n− 1 bids at price 1. Thus, all bids at value 1 are rejected and all bids

at value b win the auction and only have to pay 1. DOT’s profit is thus n/b (the number of bids

at b) whereas the optimal single price profit is n. Thus, for b very large, DOT performs arbitrarily

worse than the optimal single price profit.

We note that any input on which the single price omniscient auction finds two different bid

values that give approximately the same revenue will have a similar worst case. Indeed, we extend

this result in Section 4 by showing that all deterministic auctions suffer from this type of problem.

In the Bayesian analysis of Lemma 3.3, these bad inputs are very unlikely to occur; analysis

of the expected profit hides the possibility of messing up on specific inputs. While this is not a

problem if the bids are from a random source, it is not necessarily reasonable to expect the bidders’

utility values to be truly random.

To expose auctions, like the one above, that have inputs on which they perform poorly, we turn

to worst-case analysis. The goal of the worst-case analysis we employ here is to get a bound on how

badly the auction could mess up if an adversary generated the worst possible input. While this

adversarial view is clearly not a realistic model of how bidders bid either, an auction that performs

well in the worst case will certainly perform well on the more benign reality. As we shall see in this

paper, there are auctions that perform well even under worst-case analysis.

The notion of competitive analysis is a natural one. In the worst case, all input bids could be

zero (or negligible) and no auction will be able to extract a high profit. Thus, instead of absolute

profit, we look at auction profit relative to an “optimal” auction on the same input. The correct

notion of an optimal auction is not obvious. In general, our goal is to get the strongest results we

can, and thus we will try to compare our truthful auctions against the best possible auction that we

can feasibly compete with. Once the optimal auction is defined, the best competitive auction is the

one that minimizes the competitive ratio, the worst case ratio between the optimal auction profit

and its profit. A fundamental goal of this research is to determine the best metric for comparison,

the corresponding best competitive ratio, and the auction mechanism that achieves it.

3.1 Competitive Auction Framework

A key part of setting up a competitive framework for analyzing solutions to any problem is coming

up with the right metric for comparison. As a starting point, we would like to take the strongest pos-

sible benchmark for comparison that we can: the profit of an auctioneer that is perfectly informed
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about the bidder’s values. This leads us to consider as the two most natural metrics for comparison

the optimal omniscient multi-price and single-price auctions, T and F , defined in Section 2.2.

We first compare the performance of F relative to T . Specifically, we observe that in the worst

case, the maximum ratio of T to F is logarithmic in the number n of bidders.

Lemma 3.4 There exist bid vectors b for which

F(b) = Θ(T (b)/ ln n).

Moreover, for all bid vectors b

F(b) ≥ T (b)/ ln n.

Proof. For the first part, let b be the bid vector such that bi = n/i. Then F(b) = n and

T (b) = n(ln(n) + Θ(1)).

For the second part, let vi be the i-th largest bid in bid vector b. Suppose that F(b) =

maxi ivi = kvk. Then for all i,

ivi ≤ kvk.

Thus,

T (b) =
n
∑

i=1

vi ≤
n
∑

i=1

kvk

i
≤ F(b)

n
∑

j=1

1

j
= F(b)(ln n + O(1)).

Now we show that no truthful auction can be competitive against F (and hence it can not be

competitive against T ).

Lemma 3.5 For any truthful auction Af and any β ≥ 1, there is a bid vector b such that the

expected profit of Af on b is less than F(b)/β.

Proof. Consider a bid-independent randomized auction on two bids, 1 and x ≥ 1. Let h be the

smallest value greater or equal to 1 such that Pr[f(1) ≥ h] ≤ 1
2β . Then the profit on input vector

b = (1,H) with H = 4βh is at most

H

2β
+ h(1−

1

2β
) + 1 < 4h =

H

β
=
F(b)

β
.

Lemma 3.5 shows that we cannot expect to come close to matching the performance of the

optimal single price omniscient auction in the case where the optimal profit is generated from the

single highest bid. Thus, we must set our sights slightly lower. Later in the paper we will present

auctions that are competitive with F (2), the optimal single price auction that sells at least two

items. Such auctions perform comparably to F (2) in that they achieve a constant fraction of the

revenue of F (2) on all inputs.
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Definition 3.6 The optimal single price omniscient auction that sells at least two items, F (2), is

defined as follows: Let b be a bid vector, and let vi be the i-th largest bid in the vector b. Auction

F (2) on input b determines the value k such that k ≥ 2 and kvk is maximized. All bidders with

bi ≥ vk win at price vk; all remaining bidders lose. The profit of F (2) on input b is thus

F (2)(b) = max
2≤k≤n

kvk.

Note that for b where F elects to sell at least two items, F (2)(b) = F(b). Thus, excluding bid

vectors where only the highest bidder wins in the optimal auction, comparing auction performance

to F (2) is identical to comparing it to F .

Next we generalize the definition of F (2) to define F (m), as the optimal single price omniscient

auction that sells at least m items, and formalize our definition of competitiveness.

Definition 3.7 The m-optimal single price omniscient auction F (m) is defined as follows: Let b be

a bid vector, and let vi be the i-th largest bid in the vector b. Auction F (m) on input b determines

the value k such that k ≥ m and kvk is maximized. All bidders with bi ≥ vk win at price vk; all

remaining bidders lose. The profit of F (m) on input b is thus

F (m)(b) = max
m≤k≤n

kvk.

Finally, we formalize the notion of a competitive auction.

Definition 3.8 We say that auction A is β-competitive against F (m) if for all bid vectors b, the

expected profit of A on b satisfies

E[A(b)] ≥
F (m)(b)

β
.

We say that an auction is competitive against F (m) if the auction is β-competitive against F (m) for

a constant β. We refer to β as the competitive ratio of A.

The statement that an auction is competitive against F (m) implies that, restricted to inputs b

such that there are at least m items sold by the optimal auction, i.e., F (m)(b) = F(b), our auctions

are competitive against F . For m = 2, this restriction precisely excludes the case where it is not

possible to be competitive – when there is one bidder with very large utility.

Observe that since the profit of F (m) decreases as m increases, as we compete against F (m) for

larger values of m, we are demanding less and less of the truthful auction. We will thus single out

the case of competition against m = 2, as F (2) is the strongest omniscient auction that we will be

able to feasibly compete with.

Definition 3.9 We say an auction is β-competitive if it is β-competitive against F (2). In cases

where we do not wish to specify the constant β, we simply say that the auction is competitive.
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By considering competitiveness against F (m) for different values of m, we obtain results that are

relevant to a wider range of applications. For example, in situations in which the auctioneer does

not have prior distributions on bidders’ bid values, but nonetheless has a limited amount of prior

knowledge about the bidders, i.e., that his profit will be maximized by selling at least m items, he

can use an auction that is tailored to such a situation, and obtain much stronger guarantees on the

competitive ratio. One such natural example is when there are a large number of bidders, and the

auctioneer is safe in assuming that all bid values come from a bounded range.

4 Deterministic Auctions are not Competitive

In this section, we show that no symmetric deterministic auction can be competitive. An auction

is symmetric if the outcome is independent of the order of the bids. More precisely, we say that A

is symmetric if for all bid vectors b and permutations π of the bidders, the output of A on input

π(b) is price vector π(p) and allocation π(x) (given that the output of A on b is p and x).

We now show that no symmetric deterministic auction is competitive. In contrast, in Section 6,

we will show that there are competitive symmetric randomized auctions.

Theorem 4.1 Let Af be any symmetric deterministic auction defined by bid-independent function

f . Then Af is not competitive: For any 1 ≥ m ≤ n there exists a bid vector b of length n such

that the profit of Af on b is at most F (m)(b)m
n .

Proof. Fix n and m and the symmetric bid-independent auction Af . Consider the set of bid

vectors whose bids are all n or 1. For 0 ≤ j ≤ n− 1, write f(j) for the price the auction assigns to

a masked vector with exactly j bids at n and n− 1− j bids at 1. Note that if f(0) > 1 then if all

bids are 1, the auction has profit 0 and the conclusion of the theorem holds trivially. So assume

f(0) ≤ 1 and let k be the largest integer in {0, . . . , n− 1} such that f(k) ≤ 1. Let b be the the bid

vector with k + 1 bids at n and n− k − 1 bids at 1. The profit of Af on b is (k + 1)f(k) ≤ k + 1

since the only winners are those who bid n. If k ≤ m − 1 then F (m) has profit n. If k ≥ m then

F (m) has profit at least (k + 1)n. In either case the profit is at most F (m)(b)m
n .

This result motivates the consideration of randomized mechanisms. As a randomized mechanism

is just a randomization over deterministic auctions, it is still the case that a randomized auction can

perform poorly on unlucky outcomes of our random coin flips. However, the auction can be designed

such that these unlucky outcomes are very improbable. We note that this use of randomness in the

mechanism is very different from assuming the bids come from a random distribution. The latter

is making an external assumption on our inputs, while internal randomness in the mechanism

is guaranteed and completely under the control of the mechanism. As we will show with our

development of randomized auctions that are competitive in worst case, there is no need to make

the assumption that the bids are randomly generated when we can randomize the mechanism

instead. Of course, the use of randomization in mechanisms and algorithms is a standard technique

in game theory and computer science
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5 A Lower Bound on the Competitive Ratio

We have seen that in order to construct competitive truthful auctions, we will need to incorporate

randomization into the mechanism. Before showing how this is done, we prove a lower bound on

the performance of any truthful auction, even a randomized one, compared to F (2): We show that

for any randomized truthful auction A, there exists an input bid vector b on which

E[A(b)] ≤
F (2)(b)

2.42

.

To prove the lower bound, we analyze the behavior ofA on a bid vector chosen from a probability

distribution over bid vectors. The outcome of the auction is then a random variable depending on

both the randomness in A and the randomness in b. We show that Eb[EA[A(b)]] ≤
Eb[F(2)(b)]

2.42 .

It follows immediately (from the definition of Eb[·]) that there must exist a fixed choice of b

(depending on A) for which E[A(b)] ≤ F(2)(b)
2.42 .

Consider n i.i.d. bids b(n) generated from the distribution with each bid bi satisfying Pr[bi > y] =

1/y for all y ≥ 1. Consider a truthful auction A. Let Vi be the price offered to bi in the bid-

independent implementation of A. Vi is a random variable depending on A and all of the bj other

than bi. Let Pi be the profit from bidder i which is 0 if bi < Vi and Vi otherwise. For v ≥ 0,

E[Pi|Vi = v] = v · Pr[bi > v|Vi = v] = v · Pr[bi > v] ≤ 1, since bi is independent of Vi. Therefore

E[Pi] ≤ 1. Thus we have:

Lemma 5.1 For b(n) defined above, the expected revenue of any truthful deterministic auction, A,

is at most n.

Note that for any deterministic bid-independent auction that offers prices of at least one, the

expected revenue is exactly n.

The proof of the following result is technical and can be found in Appendix C.

Lemma 5.2 For n bids from the above distribution, the expected value of F (2) is

E
[

F (2)(b(n))
]

= n− n

n
∑

i=2

(

−1

n

)i−1 i

i− 1

(

n− 1

i− 1

)

.

Combining this with the previous lemma we get:

Lemma 5.3 For bids as defined above, we have

E
[

F (2)(b(n))
]

E
[

A(b(n))
] = 1−

n
∑

i=2

(

−1

n

)i−1 i

i− 1

(

n− 1

i− 1

)

.

Interesting special cases are n = 2 where this gives a lower bound of 2 which matches the best

competitive auction for two bids, the 1-item Vickrey auction. For n = 3 this gives a lower bound

of 13/6. A lower bound for the ratio of the best competitive auction on general n is obtained by

taking the limit.
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Lemma 5.4

lim
n−→∞

(

1−
n
∑

i=2

(

−1

n

)i−1 i

i− 1

(

n− 1

i− 1

)

)

= 1 +
∞
∑

i=2

(−1)i
i

(i− 1)(i − 1)!

The proof of the lemma appears in Appendix C. Routine calculations then show that the limit

value is at least 2.42.

Combining this with Yao’s application of the Minimax theorem (See Motwani and Raghavan

[9], Section 2.2.), we get:

Theorem 5.5 Let A be any truthful randomized auction. The competitive ratio of A is at least

2.42.

6 Competitive Auctions via Random Sampling

We now present two techniques for designing competitive auctions that are based on random sam-

pling. Both techniques start by randomly partitioning the input bids into two sets. This is done

by flipping a fair coin for each bid to decide which partition to assign it. We then use one partition

for market analysis to plug into a sub-auction to be run on the other partition, and vice versa.

In what follows, we explore two choices for the sub-auction. The first, the Dual-Price Sampling

Optimal Threshold auction, uses as a sub-auction a simplification of the optimal Bayesian auction

(Vickrey with reservation price) to the unlimited supply case. The second, the Sampling Cost

Sharing auction, uses the cost sharing mechanism of Moulin and Shenker [10] for the sub-auction.

6.1 Dual-Price Sampling Optimal Threshold Auction

In this section, we present the Dual-Price Sampling Optimal Threshold (DSOT) auction. DSOT is

a randomized version of the DOT auction presented in Section 3. The DSOT auction is guaranteed,

on all inputs, to achieve a constant fraction of the profit of F (2), the optimal single-price omniscient

auction which sells at least two items. More importantly, on a large class of interesting and practical

bid vectors, DSOT is guaranteed to get very close the profit of F , the optimal single-price omniscient

auction.

The DSOT auction is defined as follows:

Note that DSOT is a dual-priced auction. If it is important to have a single-price auction, one

can simply skip the 4-th step and reject all the bids in b′, at the cost of half the expected profit.

It is readily apparent that DSOT can be implemented bid-independently and thus from Corol-

lary 2.8:

Observation 6.1 The Dual-Price Sampling Optimal Threshold auction is truthful.

We now discuss the performance of DSOT. Our first result is that on every input, DSOT

achieves a constant fraction of the profit of F (2).

Theorem 6.2 DSOT is constant competitive against F (2).

12



Auction 2 Dual-Price Sampling Optimal Threshold Auction (DSOT)

1. Partition bids b uniformly at random into two sets: for each bid, with probability 1/2 put
the bid in b′ and otherwise b′′.

2. Let p′ = opt(b′) and p′′ = opt(b′′), the optimal fixed price thresholds for b′ and b′′, respec-
tively. (See Definition 3.1.)

3. Use p′ as a threshold for all bids in b′′ (i.e., all bids in b′′ of value below p′ are rejected; all
remaining bids win at price p′).

4. Use p′′ as a threshold for all bids in b′.

Proofs of this theorem and the rest of the theorems in this section are technical and thus are

deferred to Appendix A.

The constant bound we obtain in this theorem is quite weak. However, there are a number of

interesting special cases in which DSOT’s performance is significantly better. One such special case

is presented in the following theorem.

Theorem 6.3 Let b be any bounded-range bid vector, i.e., any bid vector of n bids with bi ∈ [1, h]

for all i. Then

lim
n→∞

max
b

F(b)

DSOT(b)
= 1.

To prove this theorem, and generalizations thereof, we consider the DSOTr auction, a parame-

terized version of the DSOT auction. To define DSOTr, we first generalize Definition 3.1.

Definition 6.4 Let b be a vector of bids. Denote by optr(b) the sale price for b that gives the

optimal profit among those sale prices that result in the sale of at least r items, i.e.,

optr(b) = argmaxvi|i≥r ivi,

where vi is the i-th largest bid in b. If r > n, we arbitrarily define optr(b) = 0.

Theorem 6.5 There is an absolute constant C, such that for any ǫ > 0, DSOTm
2 −ǫm is (1 + ǫ)-

competitive against F (m), with probability at least 1− e−Cǫ2m.

Thus, a parameterized version of DSOT asymptotically (as m gets large) matches the profit of F (m).

Recall that F (m), the optimal single-price auction that is required to have at least m winners, is

the same as F when F chooses to sell at least m items. Thus F (m) is the best auction when the

auctioneer is required to use a single price and sell at least m items. An immediate corollary of

the above theorem is that on any bid vector b such that (a) F(b) = F (m)(b) and (b) with high

probability DSOT and DSOTm
2 −ǫm exhibit the same behavior on b (i.e., for b partitioned into b′

13



Auction 3 Parameterized Dual-Price Sampling Optimal Threshold Auction (DSOTr)

1. Partition bids b uniformly at random into two sets: for each bid, with probability 1/2 put
the bid in b′ and otherwise b′′.

2. Let p′ = optr(b
′) and p′′ = optr(b

′′), the optimal fixed price thresholds that sell at least r
items for b′ and b′′, respectively.

3. Use p′ as a threshold for all bids in b′′ (i.e., all bids in b′′ of value below p′ are rejected; all
remaining bids win at price p′).

4. Use p′′ as a threshold for all bids in b′.

and b′′, optr(b
′) = opt(b′) and optr(b

′′) = opt(b′′), where r = m
2 − ǫm), we can conclude that with

high probability DSOT(b) ≥ F(b)
(1+ǫ) .

It is easy to check that conditions (a) and (b) hold for the case of bids of bounded support, as

the number of bidders gets large, yielding Theorem 6.3 as an immediate corollary of Theorem 6.5.

Thus, for a large class of inputs, DSOT achieves essentially optimal performance. For worst-

case inputs, however, the constant in the competitiveness of DSOT is weak. It is quite clear from

studying the proof of Theorem 6.2 (in Appendix A) that the analysis given there is not tight and

the constant bound we obtain on DSOT’s competitiveness is very weak. However, it is not hard

to see that DSOT can not be better than 4-competitive. For example, when b consist of two very

high bids h and h + ǫ, and all other bids are negligible, the expected profit of DSOT = F (2)/4.

In the next section, we present an auction which achieves this bound: the SCS auction that is

4-competitive.

6.2 Sampling Cost-Sharing Auction

Now we present another competitive truthful auction based on sampling that is simple, easy to

analyze, and achieves the competitive ratio of four.

We first review a standard cost-sharing technique [10, 12]. The goal of this technique is, given

bids b and cost C, to find a subset of the bidders to share the cost C. More precisely, the cost-

sharing mechanism is defined as follows:

CostShareC : Given bids b, find the largest k such that the highest k bidders’ values are

at lease C/k. Charge each C/k.

The two important properties of this mechanism are that

• CostShareC is truthful.

• If C ≤ F(b), CostShareC has revenue C; otherwise it has no profit.

Because CostShareF ′ and CostShareF ′′ are truthful on their respective partitions, we have,

14



Auction 4 Sampling Cost Sharing Auction (SCS):

1. Partition bids b uniformly at random into two sets, resulting in bid vectors b′ and b′′.

2. Compute F ′ = F(b′) and F ′′ = F(b′′), the optimal fixed price profits for b′ and b′′, respec-
tively.

3. Compute the auction results by running CostShareF ′′ on b′ and CostShareF ′ on b′′.

Observation 6.6 SCS is truthful.

Next we show that SCS is competitive.

Theorem 6.7 SCS is 4-competitive, and this bound is tight.

Proof. In the special case that F ′ = F ′′ the auction profit is F ′ + F ′′ ≥ F(b) and we are

done. Otherwise, the auction profit is R = min(F ′,F ′′). Suppose, without loss of generality, that

F ′ < F ′′. Then CostShareF ′′ on b′ will reject all bids in b′. However, CostShareF ′ on b′′ will be

able to achieve profit F ′.

By definition, F (2) on b sells to k ≥ 2 bidders at price p for a profit of F (2) = kp. These k

bidders, all with bid value at least p, are divided uniformly at random between b′ and b′′. Let k′

be the number of them in b′ and k′′ the number in b′′. As such, F(b′) ≥ pk′ and F(b′′) ≥ pk′′.

Therefore,
min(F(b′),F(b′′))

F (2)(b)
≤

min(pk′, pk′′)

pk
=

min(k′, k′′)

k
.

Thus, the competitive ratio

E[R]

F (2)
= 1

k

k−1
∑

i=1

min(i, k − i)
(k

i

)

2−k =
1

2
−
(k−1

⌊ k
2⌋

)

2−k.

This ratio achieves its minimum of 1/4 for k = 2 and k = 3. As k increases, the ratio approaches

1/2.

To see that the bound presented on the competitive ratio is tight, consider the case where b con-

sists of two very high bids h and h+ǫ, and all other bids are negligibly small. In this case F = F (2) =

2h, whereas the expected profit of the SCS auction is h·Pr[two high bids are split between b′ and b′′] =

h/2 = F/4.

The SCS auction, as described, gets no profit from one of the partitions, and therefore it is

likely to lose at least half of the potential profit. An alternative is to pick a parameter r < 1 and

run CostShare(rF ′) and CostShare(rF ′′). The competitive ratio of the resulting auction is 4/r > 4.

However, in a setting in which there is some prior knowledge of bidder distributions, a proper choice

of r may lead to better performance.
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7 Bounded Supply

Up to this point, we have studied the unlimited supply case, motivated by the digital goods market.

In this section, we consider the case where the number of items available for sale is bounded. This

case is typical for physical goods markets. We denote the number of items available by k. As

before, the seller wishes to maximize profit and is not required to sell all the items. The definitions

of truthful and competitive auctions, stated for the unlimited supply case, also apply to the bounded

supply case. We denote by F (m,k) the profit for the optimal single price auction that sells at least

m and at most k items. It is this quantity that we wish to be competitive with.

To reduce the bounded supply case to the unlimited supply case, we can simply ignore (reject)

all but the highest k bidders and run the unlimited supply auction on the remaining bids. We

note that in order for this to be truthful we need to make sure that none of the bidders win at a

price lower than the highest ignored bid. More formally the bounded supply auction Ak works as

follows. Let xV and pV be the outcome of simulating k-Vickrey auction on b. Let xA and pA be

the outcome of simulating A on bA given by bAi = xV
i bi (i.e., b with losers of k-Vickrey treated as

zero). Compute the outcome of Ak as p with pi = max(pVi , pAi ) and x with xi = xV
i xA

i .

This technique allows us to trivially extend all results in this paper to the bounded supply case.

Thus, for example, for DSOT we obtain:

Theorem 7.1 The limited supply version of DSOT is constant competitive against F (2,k).

For SCS we obtain:

Theorem 7.2 The limited supply version of SCS is 4-competitive against F (2,k).

It is interesting to point out that by using auctions like DSOT and SCS in a k-item auction it

is possible on many bid vectors to obtain profit significantly higher than that of the k-item Vickrey

auction.

8 Better than F?

Thus far we have demonstrated several auction mechanisms that perform comparably to F (2). In

that F (2) is comparable to F , these auctions perform comparably to F . As F is the optimal single-

price auction it is clear that no auction that always uses a single price can achieve a higher revenue

than F . This gives good justification for comparing the revenue of single-price auctions to F (or

F (2)).

The question remains of whether or not we have chosen the “best” metric possible for com-

parison. There are two primary goals in choosing the metric. First, we wish to achieve the best

possible performance and thus we would like to compare ourselves against the strongest possible

benchmark. On the other hand, we would like to find a natural metric that comes as close as

possible to capturing the performance of the best truthful auction across a wide range of inputs.
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Let us reconsider for a moment the strongest possible benchmark, the optimal omniscient multi-

price auction, T , that achieves as revenue the sum of the bids. Lemma 3.4 showed that the profit

of T can be a factor of Θ(log n) more than F . There remains the question: Does there exist

an alternative metric on bids b that captures the benefit of using multiple prices (and hence is

sometimes larger than the F(b)) that we could compare our truthful multi-priced auctions against?

As evidence to the contrary, we will show that no monotone auction can achieve an expected

profit higher than F on any input. Monotone auctions are a large class of natural multi-priced

truthful auctions; all the competitive auctions presented in this paper are monotone. This result

supports the conjecture that there is no systematic way for an auction to achieve a higher profit

than F .

8.1 Hard-coded Auctions

We begin with some motivation for the notion of monotonicity by presenting some examples of

non-monotone auctions. These auctions are not natural in the context of worst-case analysis in

that while they can achieve significantly higher profit than that of F on certain bid sets (in fact

they can achieve T (b)), they do so at the cost of having horrendously low profit (and hence very

bad competitive ratio) on other bid sets.

We first observe that for every b there is a symmetric truthful auction that achieves a profit

of T (b). For example, consider the n-tuple b with half of the bids at value one and half at value

h > 2. Thus, T (b) = (h + 1)n/2 and F(b) = hn/2. Consider the symmetric auction given by

bid-independent function f :

f(b−i) =

{

1 if more hs than 1s in b−i.

h otherwise.

This auction achieves profit T (b) on our particular input: If bi = h then f outputs h; on bi = 1, f

outputs 1. Note that on most other inputs, b′, this auction performs much worse than F .

Now we generalize this result and show that for any set of bids b∗ there exists a truthful

(symmetric) auction that achieves a revenue of T (b) =
∑

i b∗i . This is exemplified in the bid-

independent auction Afb∗ parameterized by b∗ and defined as follows:

fb∗(b−i) =

{

bj if π(b−i) = b∗
−j for some permutation π

∞ otherwise.

The “otherwise” case is arbitrarily chosen. In fact any number of bid vectors that have a pairwise

difference of at least two bid values can be hard-coded into an auction in this manner. The auction

will perform very poorly on any input that differs on only one bid value from one of the hard-coded

bid vectors.

For worst case profit maximization, the mechanism of both of these auctions is counter intuitive.

For the case that half the bids are at one and half at h, the bid-independent function sees more h

values and outputs one. When it sees less h values, it outputs h. A more intuitive output for a

profit maximizing auction would be to output h when there are more bids at value h.
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Note that we can combine a hard-coded auction and a competitive auction by flipping a fair

coin and running the former or the latter depending on the outcome of the toss. The resulting

auction is competitive, with the competitive ratio twice that of the underlying competitive auction.

Furthermore, on the hard-coded input b∗, the expected revenue of the auction is at least T (b∗)/2,

which can be significantly bigger than F(b∗).

Although a competitive auction can outperform F on some inputs, we conjecture that this

happens at the expense of the competitive ratio and auctions designed to achieve high competitive

ratios do not outperform F in this sense. In the next section we introduce the class of monotone

auctions that includes DSOT, SCS, DOT, and Vickrey with reservation price. We show that no

monotone auction can outperform F .

8.2 Monotonicity

The intuition underlying our notion of monotonicity is that the bid-independent function defining

the auction should output higher prices when it sees higher bid values.

Definition 8.1 An auction is monotone if for any pair of bidders i and j with bi ≤ bj, we have:

∀x ≤ bi, Pr[bidder i wins at price ≤ x] ≤ Pr[bidder j wins at price ≤ x] .

The intuition is that if bi < bj, then b−i looks like a higher set of bids than b−j . Therefore, the

price bidder i pays if he wins will tend to be higher than the price bidder j pays if he wins.

The class of monotone auctions is very general. It is not difficult to verify that the Vickrey

auction with a reservation price is monotone. Thus, the optimal Bayesian auctions for i.i.d. prior

distributions are monotone. Analysis of DSOT, SCS, and DOT, the auctions introduced in this

paper, shows that they are also monotone. The proofs of these facts are given in Appendix B. Our

optimal single-price omniscient auction, F , is also monotone.

We now show that F is the optimal monotone auction. This further justifies our comparison to

F and the related metric F (2).

Theorem 8.2 Let A be any monotone (truthful) randomized auction. For all bid vectors b, the

revenue R =
∑

i pi of A on input b satisfies

E[R] ≤ F(b).

Proof. Let f be the bid-independent function definingA. For each i, define gi(x) = Pr[f(b−i) ≤ x].

Now consider the following thought experiment. Let U be a random variable that is uniform on

[0, 1]. Imagine running the bid-independent auction that for each i uses g−1
i (U) to set the threshold

for bidder i, with g−1
i defined as g−1

i (y) = inf {x : gi(x) = y}. We denote by RU the resulting

auction revenue. We observe that the threshold distribution for bidder i in this experiment is

precisely the same as the original threshold distribution for bidder i:

Pr
[

g−1
i (U) ≤ x

]

= Pr[U ≤ gi(x)] = gi(x).
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Therefore, by summing the expectations for the bidders, we obtain

E[RU ] = E[R] .

We complete the proof by showing that the expected revenue from our thought experiment

E[RU ] is at most F(b). Conditioned on U = u, let k be the index of the smallest winning bid.

Thus, g−1
k (u) ≤ bk. Since A is monotone, for x ≤ bk and all j with bj ≥ bk, we have gk(x) ≤ gj(x).

Furthermore, gk(x) and gj(x) are monotone non-decreasing functions. Therefore, it must be that

g−1
j (u) ≤ g−1

k (u) ≤ bk ≤ bj and therefore all bidders with bid values at least bk win at a price at

most bk. Thus, the revenue, Ru, is at most bk times the number of bids with bid value least bk

which totals to at most F(b). This holds for all u ∈ [0, 1], and thus E[RU ] ≤ F(b).

9 Concluding Remarks

In this paper, we introduced a framework for designing and analyzing profit-maximizing truthful

auctions that are competitive against optimal auctions on all inputs. We provided motivation for

the framework and presented two competitive auctions.

A number of interesting open problems remain. In this paper we have shown an upper bound

of 4 and a lower bound of 2.42 on the competitive ratio against F (2). It would be interesting to

bridge the gap. More generally, we would like to understand the precise tradeoff between m and β

for auctions that are β-competitive against F (m).

The parameterized DSOTr family of auctions can achieve competitive ratios which approach 1

as m increases. A more elegant result would be a single, non-parameterized auction that has the

same property.

An interesting question is how to extend the competitive framework introduced in this paper

to other mechanism design problems. A followup paper [5] makes progress in this direction by

introducing the concept of a cancellable auction, a competitive auction that can be cancelled if

its revenue fails to meet a target. The paper shows that the DSOT auction becomes untruthful

if cancelling is allowed while the SCS auction remains truthful, i.e., it is cancellable. Cancellable

auctions apply to a wider range of problems and can be composed to build more general mechanisms.

Finally, as we have observed several times in this paper, competitive (worst-case) analysis and

the traditional (Bayesian) analysis of auctions are not mutually exclusive. An interesting direction

for research is Bayesian analysis of our auctions and their variants. We conjecture that such analysis

can lead to much tighter bounds than the worst-case bounds we present.
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A Analysis of DSOT

Below we prove that DSOT is competitive. Moreover, we show that, as m gets large, the expected

profit of DSOTr tends to F (m) for r = ⌈m2 (1− δ)⌉. This implies that for any ǫ > 0, we there is m′

such that for any m ≥ m′, DSOTr is (1 + ǫ)-competitive against F (m).
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A.1 Preliminaries

We begin our analysis of DSOTr with some preliminary lemmas. We will use the following defini-

tions:

• For any value v, let Fv = vnv (resp. F ′
v = vn′

v and F ′′
v = vn′′

v) where nv is the number of bids

in b (resp. b′ and b′′) greater than or equal to v. Thus, Fv is the profit from using v as a

threshold for b.

• Let R be the random variable representing the profit of the auction DSOTr (where the input b

is implied by the context). Recall from the definition of the DSOTr auction that p′ = optr(b
′)

and p′′ = optr(b
′′) are the thresholds used for b′′ and b′ respectively. Thus, the profit of the

auction is R = F ′
p′′ + F ′′

p′ .

• Let Eα be the event

Eα : R ≥ (1− α)
(

Fp′ + Fp′′
)

. (1)

for 0 ≤ α ≤ 1. This event holding for small α indicates a high profit, a significant fraction of

the total profit achievable using p′ and p′′ as thresholds.

• Let r = ⌈m2 (1 − δ)⌉. Suppose that optm(b) = vk, the k-th largest bid in b. Define H to be

the event that (a) there are at least r bids in b′ that are at least vk and (b) there are at least

r bids in b′′ that are at least vk. Note that if H does not occur then DSOTr may be unable

to pick a threshold of magnitude similar to vk from at least one of the partitions.

The key lemma we use is the following:

Lemma A.1 Let 0 < δ < 1 and r = ⌈m2 (1− δ)⌉. Then, for any b, DSOTr satisfies

Pr

[

R ≥
1− α

α
F (m)(b)

]

≥ Pr[Eα ∩H]

and thus

E[R] ≥
1− α

α
F (m)(b)Pr[Eα ∩H] .

Proof. Suppose that F (m)(b) = kvk. By definition, optr(b
′) returns the p′ that maximizes

F ′
p′ conditioned on there being r bids that are at least p′ (likewise for b′′ and p′′). Notice that,

conditioned on H, there are at least r elements in each of b′ and b′′ that are at least vk. Thus, we

can conclude that

F ′
vk
≤ F ′

p′ and F ′′
vk
≤ F ′′

p′′ .

We also have

F (m)(b) = Fvk
= F ′

vk
+ F ′′

vk
,
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and thus

F (m)(b) ≤ F ′
p′ + F ′′

p′′ . (2)

Event Eα holding, equation (1) allows us to lower bound the profit R as

R ≥ (1− α)[Fp′ + Fp′′ ]

= (1− α)[F ′
p′ + F ′′

p′ + F ′
p′′ + F ′′

p′′ ]

= (1− α)[R + F ′
p′ + F ′′

p′′ ]

which by equation (2) gives

R ≥ (1− α)[R + F (m)].

Event H holding, we rearrange terms to obtain

R ≥ 1−α
α F

(m).

This lemma reduces our problem to studying the events Eα and H.

To do so, for any j, we define Bj to be the j highest bids in b (i.e., {v1, . . . vj}), and let n′(Bj)

be the number of these bids that are in b′.

Definition A.2 Given c : 0 < c < 1, we say that Bj is c-good if

⌈cj⌉ ≤ n′(Bj) ≤ j − ⌈cj⌉.

Otherwise, Bj is c-bad.

We prove that Bj is likely to be c-good using the following version of the Chernoff bound:

Theorem A.3 (see e.g. [9], page 70) Let Xi, 1 ≤ i ≤ n be independent Bernoulli trials such

that for all i, Pr[Xi = 1] = 1/2. Then for X =
∑

1≤i≤n Xi, and 0 < δ ≤ 1,

Pr
[

X < (1− δ)
n

2

]

< e−
δ2n
4 .

Since the partition of b into the two subvectors b′ and b′′ is done by flipping a fair coin for

each bid, we can conclude from the Chernoff bound that

Pr[Bj is c-bad] ≤ 2e−
(1−2c)2j

4 .

Thus, we can conclude by a simple union bound that

Pr[Bj is not c-good for some j > t ] ≤
∑

j≥t

2e−
(1−2c)2j

4

and therefore we have

Lemma A.4

Pr[Bj is not c-good for some j > t] ≤
2e−

(1−2c)2t

4

1− e−(1−2c)2/4
.
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A.2 Analysis of DSOT

We are now ready to proceed with the analysis of DSOTr. First we show that as m increases, the

competitive ratio of the auction approaches one.

Theorem A.5 Let δ : 0 < δ < 1 be a constant and let r = ⌈m2 (1 − δ)⌉. Then in the limit as

m→∞, DSOTr is (1 + δ
2)/(1 − δ

2) competitive against F (m).

There is an absolute constant C > 0 such that

Pr

[

DSOTr ≥
(1− δ

2)

(1 + δ
2)
F (m)

]

≥ 1− e−Cδ2m.

Proof. Fix ǫ = δ/2. An immediate corollary of Lemma A.4 is that

lim
m→∞

Pr
[

Bj is 1
2(1− ǫ)-good for all j > m

2 (1− 2ǫ)
]

= 1− o(1). (3)

Thus, with probability 1− o(1), F ′
p′ ≤

1
2(1 + ǫ)Fp′ and F ′′

p′′ ≤
1
2 (1 + ǫ)Fp′′ , and thus

Pr
[

E 1
2
(1+ǫ)

]

= 1− o(1). (4)

Finally, we show that Pr[H] = 1− o(1). As before, we assume that optm(b) is the k-th largest

bid vk. We also assume, without loss of generality, that vk is in b′, and that vℓ is the smallest

bid larger than vk that is in b′′. Let G be the event that there is at least one element vi with

m(1− ǫ) ≤ i ≤ m in each of b′ and b′′. Then

lim
m→∞

Pr[G] = lim
m→∞

(

1− 21−ǫm
)

= 1− o(1).

Thus, with probability 1− o(1),

m(1− ǫ) ≤ ℓ < k. (5)

Moreover, from (3), we can conclude that with probability at least 1 − o(1), there are at least
m
2 (1 − ǫ) > r bids above vk in b′. Also, from (3) and (5), we can conclude that there are at least
m
2 (1− ǫ)(1 − ǫ) > r bids above vℓ in b′′. Thus,

Pr[H] = 1− o(1). (6)

Finally, from Equations (4) and (6) and Lemma A.1, we have

Pr

[

R ≥
(1− ǫ)

(1 + ǫ)
F (m)

]

= 1− o(1),

where R is the profit of DSOTr.

Next we show that DSOT is β-competitive for a (relatively large) constant β.

Theorem A.6 There is a constant β such that DSOT is β-competitive.
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Proof. As before, we denote by vi the value of the i-th largest bid. Suppose that opt2(b) is the

k-th largest bid. We restrict our attention only to partitions of the bids in which the highest bid v1

is in one subvector, without loss of generality, in b′, and both v2 and vk are in the other subvector.

This event, which we shall denote G, occurs with probability 1/4.

We claim that

Pr
[

E 19
20

]

≥ 0.05. (7)

Indeed, an immediate corollary of Lemma A.4 is that

Pr
[

Bj is 1
20 -good for all j > 20

]

≥ 0.8.

Moreover, if event G holds, all j ≤ 20 are 1
20 -good, since v1 is in b′ and v2 is in b′′. Thus, with

probability at least 0.8 −Pr[¬G] = 0.8 − 0.75 = 0.05, all Bk are 1
20 -good and event G holds, and

thus, in particular, event E 19
20

holds.

For the case m = 2, event G implies event H. Thus, from (7) and Lemma A.1,

Pr

[

R ≥
1

19
F (2)

]

≥ 0.05,

and thus DSOT is 380-competitive.

B Monotonicity of DOT, DSOT, and SCS

B.1 DOT is monotone

As DOT is a symmetric auction, the order of the bids in the input does not affect the outcome.

For convenience of notation we will assume that they are indexed from highest, b1, to lowest, bn.

We denote by t = opt(b) and t1 = opt(b−1) the optimal sale price for b and b−1, respectively.

Theorem B.1 DOT is monotone as

• It uses the single sale price t1 for all winners.

• All bidders that bid above the lowest winning bid also win.

Proof. Recall that the bid-independent function that implements DOT is f(b) = opt(b) =

argmaxbk
kbk. We will show that for any bidder i that wins the auction, bidder i− 1 also wins the

auction and at the same price. From this, a simple induction gives the theorem.

In the case that bi = bi−1 the fact that DOT is symmetric implies that they must both win

at the same price. Now consider the case that bi−1 > bi. Since bidder i wins, the computation

of opt(b−i) must find the maximum of kbk for k < i and (k − 1)bk for k > i to be (k∗ − 1)bk∗

for k∗ > i. The only difference between the computation of opt(b−i) and of opt(b−i+1) is that

for opt(b−i) we consider (i− 1)bi−1 and for opt(b−i+1) we consider (i− 1)bi. Since opt(b−i) finds

(k∗ − 1)bk∗ bigger than the other values it considers and since (i − 1)bi−1 > (i − 1)bi, it must be

that (k∗ − 1)bk∗ is the biggest value that opt(b−i+1) considers as well.
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B.2 DSOT Auction

We will show that DSOT is monotone with respect to any two bidders i and j. First fix i and j

such that bi ≤ bj . The randomness of DSOT is in the partitioning. We verify the monotonicity

of DSOT by presenting a disjoint grouping of the partitionings such that each group is monotone

with respect to i and j and the DSOT auction is just a randomization over monotone groups.

We put partitionings with bi and bj in the same partition in their own group. Note that these

groups are monotone with respect to bi and bj because both bi and bj are offered the same price.

Any partitioning with bi and bj in opposite partitions we will pair in a group with the partitioning

we get when we swap bi with bj . This gives us a group with two partitionings:

Partitioning P : B1 ∪ {bi} and B2 ∪ {bj}.

Partitioning P ′: B1 ∪ {bj} and B2 ∪ {bi}.

We show that this group {P,P ′} is monotone with respect to bi and bj if one of the two partitionings

is chosen by flipping a fair coin. Consider the thought experiment where for bi a “heads” coin flip

means use P and “tails” means use P ′, but for bj a “heads” coin flip means use P ′ and “tails” for P .

In this experiment, “heads” results in bi getting the optimal price for B2 ∪ {bj} and bj getting the

optimal price of B2 ∪ {bi}. This is just the outcome of DOT on the bid set B2 ∪ {bi, bj}. Likewise

on “tails”, the outcome is that of DOT on the bid set B1 ∪{bi, bj}. By Theorem B.1, both of these

outcomes are monotone. Note that the outcome for bi and bj as random variables in our thought

experiment are the same as the random variables for their actual outcomes for this grouping. Thus,

this grouping is monotone with respect to bidders i and j.

B.3 SCS Auction

To show that SCS is monotone, we will use the same general approach as for DSOT of finding

disjoint groupings in the partitionings and showing that each is itself monotone with respect to two

bids bi and bj with bi ≤ bj .

As with DSOT, partitionings with both bi and bj on the same partition are themselves monotone

as the cost sharing mechanism is monotone: it gives an outcome such that all winning bidders pay

the same price and all bidders whose bid value is above this price win.

Likewise, we pair a partitioning with bi and bj in different partitions, with the partitioning with

bi and bj swapped. We get partitionings P and P ′ as defined above.

Fj = F(B2 ∪ {bj}) Fi = F(B1 ∪ {bi})

F ′
i = F(B2 ∪ {bi}) F ′

j = F(B1 ∪ {bj})

Since bi ≤ bj we have:

Fj ≥ F ′
i F ′

j ≥ Fi
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Note that if bi does not win for either P or P ′ then this grouping is trivially monotone with

respect to bidders i and j. Otherwise, suppose bi wins in partitioning P and pays price pi. We will

show that bj wins in P ′ and pays p′j ≤ pi.

Let csC be the bid-independent function for CostShareC . Recall that for partitioning P , the

price for bi is computed by running CostShareFj
on B1 ∪ {bi}. For partitioning P ′ the price for bj

is computed by running CostShareF ′
i

on B1 ∪ {bj}. Thus,

pi = csFj
(B1) ≥ csF ′

i
(B1) = pj.

The intermediate step here follows because Fj ≥ F ′
i and because csC is monotone in C.

C Technical Proof for Section 5

First we prove Lemma 5.2 that says that for the prior distribution defined in Section 5, we have

E
[

F (2)(b(n))
]

= n− n

n
∑

i=2

(

−1

n

)i−1 i

i− 1

(

n− 1

i− 1

)

Proof. To get a bound on the expected value of F (2) on n bids from our distribution we define a

recurrence based on Fn,k defined as

Fn,k = max
i

(k + i)bi

for bids b(n) sorted from highest to lowest (i.e., bi ≥ bi+1). To define the recurrence, fix n, k, and

z and consider the events Gi and Hi for 1 ≤ i ≤ n defined as

Gi = i of the n bids are at least (k + i)/z

Hi = Gi ∧ ¬
n
∨

j=i+1

Gj .

We have

Pr[Gi] =

(

n

i

)(

k + i

z

)i

Pr[Hi] = Pr[Gi]Pr



¬

n
∨

j=i+1

Gj | Gi



 .

= Pr[Gi]Pr[Fn−i,k+i < z]

=

(

n

i

)(

k + i

z

)i

Pr[Fn−i,k+i < z]
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Note that events Hi are disjoint and that Fn,k is at least z if and only if one of the Hi occurs. Thus,

Pr[Fn,k > z] = Pr

[

n
∧

i=1

Gi

]

=

n
∑

i=1

Pr[Hi]

=
n
∑

i=1

(

n

i

)(

k + i

z

)i

Pr[Fn−i,k+i < z] (8)

Also, note that F0,k = 0. For n bids b(n), F(b(n)) = Fn,0. We are interested in F (2)(b(n)) which is

the same as F(b(n)) = Fn,0 except that we ignore the H1 case. This gives

Pr
[

F (2)(b(n)) > z
]

= Pr[Fn,0 > z]−Pr[H1]

= Pr[Fn,0 > z]− n
z Pr[Fn−1,1 < z] . (9)

So in order to obtain Pr
[

F (2)(b(n))
]

we need to solve the recurrence Fn,k, i.e., Equation (8). We

will show that the solution is:

Pr[Fn,k > z] = 1−

(

z − k

z

)n(z − k − n

z − k

)

. (10)

Note that our solution for the recurrence is correct for n = 0. We show that it is true in general

inductively.

Pr[Fn,k > z] =

n
∑

i=1

(

n

i

)(

k + i

z

)i

Pr[Fn−i,k+i < z] .

Substituting in our solution, we get

Pr[Fn,k > z] =

n
∑

i=1

(

n

i

)(

k + i

z

)i(z − k − i

z

)n−i(z − k − n

z − k − i

)

=
z − k − n

zn

n
∑

i=1

(

n

i

)

(k + i)i (z − k − i)n−i−1 .

We now apply the following version of Abel’s Identity [1]

(x + y)n

x
=

n
∑

j=0

(

n

j

)

(x− jw)j−1(y + jw)n−j .

Making the change of variables, j = n− i, z = −1, x = z − k − n, and y = k + n we get:

zn

z − k − n
=

n
∑

i=0

(

n

j

)

(k + i)i(z − k − i)n−i−i.
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We plug this in above and subtract out the i = 0 term to get

Pr[Fn,k > z] =
z − k − n

zn

(

zn

z − k − n
− (z − k)n−1

)

= 1−

(

z − k

z

)n (z − k − n)

(z − k)
.

Thus, our closed form expression for the recurrence is correct.

Recall our goal is to compute Pr
[

F (2)(b(n)) > z
]

. Equation (10) shows that Pr[Fn,0 > z] = n/z.

This combined with Equation (9) and Equation (10) gives

Pr
[

F (2)(b(n)) > z
]

= n
z −

n
z Pr[Fn−1,1 < z]

= n
z Pr[Fn−1,1 > z]

=
n

z

(

1−

(

z − 1

z

)n−1(z − n

z − 1

)

)

.

To complete this proof, we use the formula E
[

F (2)(b(n))
]

=
∫∞
0 Pr

[

F (2)(b(n)) > z
]

dz = n +
∫∞
n Pr

[

F (2)(b(n)) > z
]

dz. In the form above, this is not easily integrable, However, we can trans-

form it back into a binomial sum which we can integrate:

Pr
[

F (2)(b(n)) > z
]

= n

n
∑

i=2

(

−1

z

)i

i

(

n− 1

i− 1

)

.

E
[

F (2)(b(n)) > z
]

= n + n

∫ ∞

n

n
∑

i=2

(

−1

z

)i

i

(

n− 1

i− 1

)

dz.

= n− n
n
∑

i=2

(

−1

n

)i−1 i

i− 1

(

n− 1

i− 1

)

.

Next we prove Lemma 5.4 that claims

lim
n−→∞

(

1−

n
∑

i=2

(

−1

n

)i−1 i

i− 1

(

n− 1

i− 1

)

)

= 1 +

∞
∑

i=2

(−1)i
i

(i− 1)(i − 1)!

Proof. It is sufficient to show that
∣

∣

∣

∣

∣

(

1 +

n
∑

i=2

(−1)i
i

(i− 1)(i − 1)!

)

−

(

1−

n
∑

i=2

(

−1

n

)i−1 i

i− 1

(

n− 1

i− 1

)

)∣

∣

∣

∣

∣

= O

(

1

n

)

.

We use the following fact below: If, for 1 ≤ k ≤ K, 0 < ak < 1, then

K
∏

k=1

(1− ak) ≥ 1−
K
∑

k=1

ak.
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∣

∣

∣

∣

∣

(

1 +

n
∑

i=2

(−1)i
i

(i− 1)(i− 1)!

)

−

(

1−

n
∑

i=2

(

−1

n

)i−1 i

i− 1

(

n− 1

i− 1

)

)∣

∣

∣

∣

∣

≤
n
∑

i=2

∣

∣

∣

∣

∣

i

(i− 1)(i − 1)!
−

(

1

n

)i−1 i

i− 1

(

n− 1

i− 1

)

∣

∣

∣

∣

∣

=
n
∑

i=2

∣

∣

∣

∣

i

(i− 1)(i − 1)!

(

1−
n(n− 1) . . . (n− i + 2)

ni−1

)∣

∣

∣

∣

=

n
∑

i=2

∣

∣

∣

∣

i

(i− 1)(i − 1)!

(

1−

(

1−
1

n

)(

1−
2

n

)

. . .

(

1−
i− 2

n

))∣

∣

∣

∣

≤

n
∑

i=2

∣

∣

∣

∣

∣

∣

i

(i− 1)(i − 1)!



1−



1−

i−2
∑

j=1

j

n









∣

∣

∣

∣

∣

∣

≤

n
∑

i=2

∣

∣

∣

∣

i

(i− 1)(i − 1)!

(

i2

n

)∣

∣

∣

∣

=
1

n

n
∑

i=2

i3

(i− 1)(i − 1)!
≤

1

n

∞
∑

i=2

i3

(i− 1)(i− 1)!

As (i− 1)! grows exponentially,
∑∞

i=2
i3

(i−1)(i−1)! is bounded by a constant and we have the desired

result.
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