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Abstract

We prove the existence of e-Nash equilibrium strategies with support logarithmic in
the number of pure strategies. Furthermore, the payoffs to all players in any (exact)
Nash equilibrium can be e-approximated by the payoffs to the players in some such log-
arithmic support e-Nash equilibrium. These strategies are also uniform on a multiset of
logarithmic size and therefore this leads to a quasi-polynomial algorithm for computing
an e-Nash equilibrium. To our knowledge this is the first subexponential algorithm for
finding an e-Nash equilibrium. Our results hold for any multiple-player game as long
as the number of players is a constant (i.e., it is independent of the number of pure
strategies). A similar argument also proves that for a fixed number of players m, the
payoffs to all players in any m-tuple of mixed strategies can be e-approximated by the
payoffs in some m-tuple of constant support strategies.

We also investigate the question: when does a game have a “small” support (exact)
equilibrium? We derive a sufficient condition for two person games: if the payoff ma-
trices of a two person game have low rank then the game has a Nash equilibrium with
small support. This also implies that if the payoff matrices can be well approximated
by low rank matrices then the game has an e-equilibrium with small support.

1 Introduction

Non-cooperative game theory has been extensively used to analyze situations of strategic
interactions. Recently, it has been pointed out [20, 11, 24] that many internet related
problems can be studied within the framework of this theory. The most important solution
concept in non-cooperative games is the notion of Nash equilibrium.

In this paper we consider the following two issues concerning Nash equilibria:

First, it is currently not known if Nash equilibria can be computed efficiently. For two
player games the known algorithms [8, 9, 10, 12, 13, 14, 16] either have exponential worst-
case running time (in the number of available pure strategies) or it is unknown whether
they run in polynomial time. For three player games, the problem seems to be even more
difficult. Although for two player games it can be formalized as a Linear Complementarity
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Problem (and hence some of the algorithms above) the problem for three player games is
a Non-linear Complementarity Problem. Furthermore there exist examples of small three
player games with rational payoff matrices in which all Nash equilibria are irrational. Al-
gorithms for approximating equilibria in multiple player games (among others, [23, 30]) are
also believed to be exponential. The problem of computing Nash equilibria has been of con-
siderable interest in the computer science community and has been called one of the central
open problems in computational complexity (Papadimitriou [20]). In fact it is known that
the problem for two-person games lies in some class between P and NP [21]. It is also
known that determining the existence of a Nash equlibrium with some additional natural
properties (e.g. maximizing payoff sum, maximizing support) is NP-hard [5, 2]. For surveys
on computational issues of Nash equilibria see [28, 17].

A second and related issue is the need to play simple strategies. Even if Nash strategies can
be computed efficiently, they may be too complicated to implement. This has been pointed
out, among others, by Simon [27] and later by Rubinstein [25] in the context of bounded
rationality. Players tend to prefer strategies as simple as possible. They might prefer to
play a sub-optimal strategy (with respect to rationality) instead of following a complex
plan of action which might be difficult to learn or to implement. In this paper we consider
normal form games and our notion of simple strategies is strategies which are uniform on a
small support set. The importance of small support strategies becomes clear if we consider
the pure strategies to be resources. In this case an equilibrium is almost impractical if a
player has to use a mixed strategy which randomizes over a large set of pure strategies. The
problem with the requirement of small strategies, of course, is that there exist games whose
Nash equilibria are completely mixed (i.e., a player has to randomize over all his available
pure strategies).

We address both these problems (namely, the need for efficient algorithms and the need for
simple strategies), by using the weaker concept of e-equilibrium (strategies from which each
player has only an € incentive to defect). More precisely:

Our main result (Section 3) is that for any two-person game there exists an e-equilibrium
with only logarithmic support (in the number of available pure strategies). Moreover the
strategy of each player in such an equilibrium can be expressed in polylogarithmically
many bits. In our opinion, this is an interesting observation on the structure of competitive
behavior in various scenarios - namely, extremely simple approximate solutions exist. This
result directly yields a quasi-polynomial (n®("") where n is the number of available pure
strategies) algorithm for computing such an approximate equilibrium. To our knowledge
this is the first subexponential algorithm for e-equilibria. In addition to being small, our
approximate equilibria provide both players with a good payoff too: the payoff that each
player gets using these strategies is almost the same as that in some exact Nash equilibrium.
Finally, our result holds not only for two person games but also for games in which the
number of players is independent of the number of pure strategies. It is interesting to note
that although the problem of finding exact equilibria seems to become more difficult in the
“transition” from two player games to three and more, this is not the case for approximate
equilibria. Computing e-equilibria is important since they behave almost as well as exact
Nash equilibria in several scenarios. In Section 3.2 we provide an interesting example based
on the recent work by Vetta [29].



A second result (Section 3) is that if the players are allowed to communicate and “sign
treaties” then there are constant support strategies which approximate the payoffs that each
player gets in an equilibrium (in fact there are constant support strategies that approximate
the payoffs of any pair of strategies). In real life, such treaties are not unknown (though often
tacit) - this result can be considered as an explanation of why certain small strategies behave
well and are used in real games, as opposed to a large and complicated Nash equilibrium.

A third question we investigate is: “when does a game have small support exact Nash
equilibria?” In Section 4 we give a sufficient condition for two person games: if the payoff
matrices of the players have low rank then there exists a Nash equilibrium with small
support. This is a generalization of a result due to Raghavan [22]. We also prove that if the
matrices can be well approximated by low rank matrices, then there exists an approximate
equilibrium with small support.

The problem of looking for small support equilibria has been studied earlier. Koller and
Megiddo [8] prove that for two person games in extensive form there exist equilibrium
strategies whose support is at most the number of leaves of the game tree. However, not
all games can be represented in the extensive form with a small number of leaves (where
by small we mean logarithmic in the number of pure strategies). Our result guarantees the
existence of equilibria with logarithmic support for any two person normal form game (and
also for multiple players as stated above) but the equilibria are only approximate.

It should be noted that since Nash equilibria are fixed points of a certain map [19], e
equilibria can be found using Scarf’s algorithm [26], a general algorithm for finding ap-
proximate fixed points of continuous mappings. However, no sub-exponential upper bounds
are known for approximating equilibria using this algorithm. In fact, Scarf’s algorithm is
known to take exponential time in the worst case for a general fixed point approximation

([6]).

For the class of two-person zero-sum games, results for approximate minmax strategies have
been proved independently by Lipton and Young [15] and Althéfer [1]. In fact the proofs
of Section 3 use the same technique (sampling). While [1] gives no details, the author
claims that a similar result holds for non-zero sum two person games. The implication from
approximate minmax strategies to e-Nash equilibria which also approximate the payoffs in
some exact Nash equilibrium does not seem to be direct. Furthermore our result holds for
multiple player games too and not only for bimatrix games, which is interesting because
multiple player games seem to be more difficult.

The remaining of the paper is structured as follows: In Section 2 we give the relevant
definitions. In Section 3 we prove our main result. In Section 4 we prove that low rank
payoff matrices imply the existence of equilibria with small support.

2 Notation and Definitions

Consider a two person game G, where for simplicity the number of available (pure) strategies
for each player is n. We will refer to the two players as the row and the column player and
we will denote their payoff matrices by R, C' respectively. The results of Section 3 are also



generalized for multiple person games in which the players do not have the same number
of pure strategies.

A mized strategy (or a randomized strategy) for a player is a probability distribution over
the set of his pure strategies and will be represented by a vector z = (z1,z2, -+, z,), where
z; > 0 and Y x; = 1. Here z; is the probability that the player will choose his ith pure
strategy. If x; > 0 we say that the mixed strategy x uses the ith pure strategy. The support
of x (Supp(x)) is the set of pure strategies that it uses. A mixed strategy is called k-uniform
if it is the uniform distribution on a multiset S of pure strategies, with |S| = k. For a mixed
strategy pair z,y, the payoff to the row player is the expected value of a random variable
which is equal to R;; with probability z;y;. Therefore the payoff to the row player is (z, Ry),
where (. ,.) denotes the inner product of two n-dimensional vectors. Similarly the payoff to
the column player is (z, Cy).

The notion of a Nash equilibrium [19] is formulated as follows:
Definition 1 A pair of strategies *,y* is a Nash equilibrium point if:
(i) For every (mized) strategy T of the row player, (T, Ry*) < (z*, Ry*), and
(ii) For every (mized) strategy § of the column player, (z*,Cy) < (z*, Cy*)
Similarly we can define e-equilibria (this definition is well known in the literature):

Definition 2 For any € > 0 a pair of mized strategies x',y' is called an e-Nash equilibrium
point if:

(i) For every (mized) strategy T of the row player, (Z, Ry') < (', Ry') + € and

(i1) For every (mized) strategy y of the column player, (z',Cy) < (z',Cy') + €

3 The Main Result

For the present we assume that all entries of R and C are between 0 and 1. Our main result
is:

Theorem 1 For any Nash equilibrium z*,y* and for any real number € between 0 and 1,

there exists, for every k > 126151”, a pair of k-uniform strategies x',y', such that:

1. o',y is an e-equilibrium,

2. (', Ry') — (z*, Ry*)| < €, (row player gets almost the same payoff as in the Nash
equilibrium,)

3. |(«, Cy") — (z*, Cy*)| < ¢, (column player gets almost the same payoff as in the Nash
equilibrium,)



Proof :

The proof is based on the probabilistic method. For the given € > 0, fix k > 12Inn/e2.
Form a multiset A by sampling k times from the set of pure strategies of the row player,
independently at random according to the distribution z*. Similarly form a multiset B by
sampling k times from the pure strategies of the column player, independently at random
according to the distribution y*.

Let z' be the mixed strategy for the row player which assigns probability 1/k to each
member of A and 0 to other pure strategies. Let 3’ be the mixed strategy for the column
player which assigns probability 1/k to each member of B and 0 to other pure strategies.
Clearly, if a pure strategy occurs « times in the multiset, then it is assigned probability
afk.

Denote by z* the ith pure strategy of the row player, and by y? the jth pure strategy of
the column player. In order to analyze the probability that z’,v" is an e-Nash equilibrium
it suffices to consider only deviations to pure strategies.

We define the following events:
¢ = {| (=, Ry) - (=", Ry") |< ¢/2}
mi = {(@ Ry) < (z',Ry) + e}, (i=1,---,n)
b = {1 E0Y) ~ @O < ¢/2)
m; = {(@,Cyl) < (2',Cy") + €}, (G=1,---,n)
GOOD = ¢1Ngg () mi() w2

=1 j=1

We wish to show that Pr[GOOD] > 0. This would mean that there exists a choice of A
and B such that the corresponding strategies z' and gy’ satisfy all three conditions in the
statement of the theorem.

In order to bound the probabilities of the events ¢ and ¢§ we introduce the following
events:

¢ = {| (&', Ry") — («", Ry") |< e/4}
¢ = {| (& Ry) - (¢, Ry") [< e/4}
$2a = {l (" Cy) = (2", Cy") [< e/4}
¢ = {l (& CY) - (=", CY) < e/4}

Note that ¢1, N ¢1p C ¢1 hence ¢ C ¢f, UpS,. The expression (z', Ry*) is essentially a sum
of k independent random variables each of expected value (z*, Ry*). Each such random
variable takes value between 0 and 1. Therefore we can apply a standard tail inequality [7]
and get:

Pr(¢,] < 2¢+/*

Using a similar argument we have:

Prlgfy) < 2¢ 7/



Therefore Pr[¢] < 4e~*<"/8 and the same holds for the event ¢5.

In order to bound the probabilities of the events 71 ;’s and 7 ;’s we define the following
auxilliary events:

P1i={(«',Ry') < («', Ry*) +¢/2}, (i=1,---,n)
¢2,j = {(xl,Ry]) < ($*5Ryj)+€/2}, (.7 = 15"',77')

We can easily see that

P1,i N1 C g, (i=1,---n)
o, N ¢ C o, (j=1,---n)
Hence fori =1,---,n,j=1,---,n:
Prn{ ;] < Priyi ;] + Pr(éf] (1)
Pr{r5 ;] < Pr(y5 ;] + Pr(¢s] (2)

Using the Hoeffding bound again we get:
Priy§,) < e */2

Priy5;] <e */?

Now by equations 1 and 2 we see that:

Pr(GOOD®] < Pr(¢§] + Pr(¢§] + Zn: Prinf ;] + Xn: Prins;]
i=1 j=1

< e ke'/8 4 2n[e_’“2/2 + 46_’“2/8] <1
Thus Pr[{GOOD)] > 0. O

Note that the strategies z’,7' do not only form an e-equilibrium, but they also provide
both players a payoff e-close to the payoffs they would get in some Nash equilibrium. In
fact, the payoffs of every Nash equilibrium can be thus approximated by a small strategy
e-equilibrium. This provides another incentive for the players to remain in the e-Nash
equilibrium. Furthermore z’,y" are k-uniform, which implies the following corollary:

Corollary 2 For a 2-person game, there exists a quasi-polynomial algorithm for computing
all k-uniform e-equilibria (by Theorem 1 at least one such equilibrium ezists).

Proof : Given an € > 0, fix k = 1261# By an exhaustive search, we can compute
all k-uniform e-equilibria (by Theorem 1 at least one such equilibrium exists; verifying e-
equilibrium condition is easy as we need to check only for deviations to pure strategies).



n+k—1 2
The running time of the algorithm is quasi-polynomial since there are ( k ) possible

pairs of multisets to look at. m|

To our knowledge this is the first subexponential algorithm for finding an approximate
equilibrium. Furthermore, given the payoffs of any Nash equilibrium the algorithm can find
an e-Nash equilibrium in which both players receive payoffs e-close to the given values.

When the entries of R and C' are not between 0 and 1 the ¢ incentive to defect and the €
change in payoff both get magnified by Ry,q0 — Rmin for the row player and by Chee — Criin
for the column player. Here R,,q; and R,,;, denote the maximum and minimum entry of
R, and similarly for C. Additionally if the players do not have the same number of pure
strategies (say ni,ns) then the same result holds with k& > 121“#@{"1’"2}

Our results can also be generalized to games with more than two players. In particular for
an m-person game:

Theorem 3 Let si,---,s;, be a Nash equilibrium in an m-person game. Let pi,---,p}, be
the payoffs to the players in the Nash equilibrium. Then for any real number € between 0
2 2
and 1, there exists, for every k > 37”16#, a set of k-uniform strategies s\, s5, -+, s,
such that:
1. sh,8h,--, sl is an e-equilibrium,

2. |pi—pfl<efori=1,---,m
where pY,---,pl, are the payoffs to the players if they play strategies s;.

As we see from Theorem 3 we can guarantee an e-equilibrium with logarithmic support only
when m is independent of n. It seems to us that the technique of sampling cannot help
us prove a more general theorem than that. It is an interesting question to see whether
this can be done using a different technique. However, it is still interesting that we can
prove the existence of simple approximate equilibria even for three player games. This is
so because the problem of finding exact equilibria for three player games seems to be much
more difficult than for two player games due to irrational equilibria and non-linearity of the
Complementarity Problem.

Corollary 2 also generalizes to games with a constant number of players since in this case
the number of combinations of multisets that the algorithm has to look at is still quasi-
polynomial . Again it would be interesting if a more general result could be proved.

3.1 Approximating Payoffs of Nash equilibria with Constant Support

In terms of the size of the support we can do much better, if we have weaker requirements.
There may be applications in which we would not even insist on an approximate equilibrium.
All we would care for is to approximate the payoffs in an actual Nash equilibrium. The
next result is in that direction:



Theorem 4 For any Nash equilibrium z*,y* and any € between 0 and 1, there exists, for
every k > 5/€2, a pair of k-uniform strategies (z,y), such that

1. |(z, Ry) — (z*, Ry*)| < € (row player gets almost the same payoff), and

2. |(z,Cy) — (z*,Cy*)| < € (column player gets almost the same payoff),

Again this result can be generalized to multiple player games. For an m-person game the
support of the k-uniform strategies will be O(m? Inm).

Theorem 4 establishes the existence of constant support strategies which approximate the
payoffs that both players get in a Nash equilibrium. The techniques used to prove this are
the same as those used to prove Theorem 1, and the proof is omitted. Again, we assume
that the entries of R and C are between 0 and 1 (in the general case we get a magnification
by Rpmazr — Rmin and Ciaz — Cin as before). Note that Theorem 4 is true for any pair of
strategies x*,y*, not necessarily for Nash equilibria.

A situation in which this result could be applicable is the following: Consider a game
between two players both having a very large number of pure strategies at their disposal.
Let v1, v be the payoffs in a Nash equilibrium to the row and column player respectively.
If the support of the equilibrium strategies is very big, then it would be preferable for both
players to sign a “bilateral treaty” (multilateral treaty in case of multiple player games) and
use only a small number of strategies, as provided by the result. In that case, both players
would still receive a payoff close to v1 and vy respectively, while using a small number of
strategies. Furthermore, each player will be able to check, during the game, if the other
player has violated the treaty, in which case he can switch to any other strategy.

3.2 An Interesting Application

The fact that we can compute e-equilibria in quasi-polynomial time is very important, as
they are “almost as good as” exact equilibria in several scenarios. Thus the difficulty in
computing exact equilibria can be conveniently sidestepped. As an example we note the
recent result of Vetta [29] on the social performance of Nash equilibria. This line of research
was initiated by Koutsoupias and Papadimitriou [11]. The setting is a multi-player game
together with a social utility function. In this scenario we would like to know how suboptimal
a Nash equilibrium can be in terms of maximizing the social utility function. Results of
this flavor for traffic routing problems were given in [4, 11, 24]. Vetta [29] proves that in
any valid utility system with a non-decreasing and submodular social utility function, any
Nash equilibrium gives at least half of the social optimum.

In this context the fact that we can compute e-equilibria in quasi-polynomial time can be
useful. In particular a simple generalization of the proof of Theorem 3.4 in [29] to e-Nash
equilibria together with our Corollary 2 gives the following result (for details and definitions
see [29)):

Corollary 5 Consider a valid utility system with a non-decreasing submodular utility func-
tion. Let OPT be the mazimum value of the utility function. Then, we can compute in time



quasi-polynomial in the number of pure strategies, a set of mized strategies which form an
e-Nash equilibrium and which provide a social payoff P, s.t P > 1/20PT — me, where m is
the number of players.

4 Low Rank Implies Small Support Exact Equilibria

In this section we investigate the question: when does a two person game have small support
exact Nash equilibria? We show that if the payoff matrices have low rank then the game
has a small support Nash equilibrium. Furthermore we show that if the payoff matrices
can be approximated by low rank matrices then the game has a small support approximate
equilibrium (where the approximation factor depends on how well the matrices can be
approximated).

Theorem 6 can be seen as a generalization of [22] which deals with “completely mixed
equilibria”, i.e. equilibria which use all the pure strategies. The generalization is based on
a careful Gaussian elimination type step.

Denote again by R, C the payoff matrices for the row and column player respectively. Sup-
pose that R and C are n X n matrices. The results of this section can be easily generalized
for m x n, (m # n) matrices.

Theorem 6 Let z*,y* be a Nash equilibrium. If rank(C) < n—k, then there exists a mized
strategy x for the row player with |Supp(z)| < n —k + 1 such that z,y* is an equilibrium
point. Similarly, if rank(R) < n — k, then there exists a mized strategy y for the column
player with |Supp(y)| < n —k + 1 such that x*,y is an equilibrium point. Furthermore the
payoff that both players receive in the equilibria x,y* and x*,y is the same as in the initial
equilibrium x*,y*.

Proof: Letwv; = (z*, Ry*),ve = (z*,Cy*) be the payoffs to the players. Since rank(C) <
n — k there exist at least k linearly independent vectors 71, 79, - - - 7, which satisfy CTm; = 0
,4=1,...,k. At least kK — 1 of them are also linearly independent of z*. Let 7, ---m,_1 be
these vectors. Let:

* * % *
T = (.1‘1,£E2,- o awn)
m = (M1, 12,5 Tin)
T = (1, M2, +, Man)
Th—1 = (Th—1,1, Th—1,2)" " * » Tk—1,n)
Our goal is to obtain a vector z = f(z*, 7, -, mk_1) such that the following hold:

1. z has at least K — 1 coordinates equal to 0.



2. All the coordinates of x are nonnegative.

4. z,y* is a Nash equilibrium.

We find z as a suitable linear combination of z*, w1, w2, ..., mx_1. The procedure to find = is
shown in Figure 1.

In the procedure we essentially use one vector m € P in each iteration of the while loop to
make at least one more coordinate of x equal to 0, while keeping z a probability distribution.
We then discard that 7 from P. The “If |P| > k — ¢” block is used to preprocess P so that
at the end of the if-block z has i 0’s, |P| = (k— 1)— ¢, and every m € P has a 0 in every
coordinate in which z has a 0.

In each iteration, after the preprocessing step, we choose a vector 7 from P and compute our
new vector z as a linear combination of the old x and w. We consider two cases depending
on whether the entries of m sum up to 0 or not. The choices of A in both cases ensure that
z remains a probability distribution and that at least one more coordinate in z becomes 0.
No zero coordinates of x become non-zero because all 7 € P have 0 in such a coordinate
(by the preprocessing step). It can be verified that these A exist in either case.

Note also that in every step the elements of P are linearly independent since we start with
linearly independent vectors and add to m; only multiples of 7, which is the vector then
removed from P. Linear independence is essential to ensure that none of the vectors in P
will ever become the zero vector and also that we can always find a A as defined in the
procedure. It can be verified that at the end of the procedure, conditions (1), (2) and (3)
above are satisfied.

It remains to prove that z,y* is a Nash equilibrium (condition (4)). To do this we need
to prove that (a) (zf, Ry*) < (z,Ry*) and (b) (z,Cy’) < (z,Cy*) for all 4,5 = 1,---,n.
Since z*,y* is a Nash equilibrium, (2, Ry*) < v;. Consider the vector Ry*. For every
pure strategy of the row player that is used in z* the corresponding coordinate of Ry™* is
equal to v; (otherwise the row player would have a better response to y*). Furthermore
by the procedure of Table 1, we can see that if a pure strategy is not used by z* then it
is also not used by z. Therefore (z, Ry*) = v1, which implies (a). For (b) notice that at
the end of the procedure we have: x = z* + p1m + - - - ug_17m,—1 for some real numbers
p1,- - pg—1. That is, = z* + n where 1 belongs to the null space of C. Thus (z,Cy’) =
(#*,Cy) + (0, Cy) = (5%, Cyf). Also (z,Cy") = (*,Cy") + (n,Cy*) = (", Cy"). But
(z*,Cy?) < (z*,Cy*) implying (b). Hence z,y* is an equilibrium and the players receive
payoff v1, v respectively as in the initial Nash equilibrium z*, y*. O

It also follows from Theorem 6 that there exists a small support Nash equilibrium if there
is a game with low rank payoff matrices strategically equivalent to R, C [18].

Definition 3 For n xn matrices C, D, D is an e-approzimation of C if C = D+ E, where
|Ez'j| <e fO’I‘ i,j = 1, ey T



P = {7‘(‘1, ....,7Tk,1},:1} =z
1 := number of 0’s in z
While i < k£ — 1:
begin
If |P| > k — i (begin preprocessing step)
For each j s.t. z; =0
Q= {ﬂ'k DT, 7é 0,7 € P}

I |Q| = 0

P := P\my,, for some 7, € P
I 1Q| = 1

P := P\my,, for mx, € Q
IfQl>1

Choose any 7, € Q
Tk = g — Tho (Tk 5/ ko 5)  [V7k € Q)
P := P\my,

(end of preprocessing step)

Choose any my, € P _
Normalize 7, so that Y71 Tko,j is either 0 or 1.
If Z;;? Tko,j = 0

1 Tko,j
J

X = MATg; 20—
T =T — AT,
J=n —

If Zj:l 7rko,j =1

Let A be such that % = MaTy;£0 m;‘;’j
z:=(14+ ANz — Ay,
For every mj € P, mj # @y, ) i= mj — ;Z;fl Tk, Where [ is the index which

achieved the max in either case.
P := P\my,

7 := number of 0’s in z

end while

Figure 1: Obtaining an equilibrium with (rank+1)-size support.




Lemma 7 Let D be an e-approzimation of C. Let x*,y* be a Nash equilibrium for the
game with payoff matrices R, D. Then x*,y* is a 2¢-Nash equilibrium for the game with
payoff matrices R, C.

Proof :  Clearly (z*, Ry*) > (Z, Ry*), V z. For any strategy y:
(z*,Cy*) = (¢, Dy*) + (2", Ey*) > (27, Dy) + (27, Ey")

Since |Ej;| <€, V1,7,
(o, Bg) — (a°, By") < 2e

Hence,
(z*,Cy*) > (z*, Dy) + (", Ey) — 2e = (z*,Cy) — 2¢

Corollary 8 For any game R,C, and for any k < n, if C can be e-approzimated by a rank
k matriz then there exists a 2e-equilibrium z,y with |Supp(x)| < k + 1. Similarly for R.

Proof : This follows immediately from Theorem 6 and Lemma 7. a

In particular, we can use the Singular Value Decomposition to approximate the payoff
matrices R,C by rank k matrices for any k. The approximation factor e¢ of Corollary 8 is
then a function of the singular values of the matrices.

A useful corollary arises from the observation that for 2-person games, if we know the
support of a Nash equilibrium, then we can compute the exact equilibrium strategies in
polynomial time. This is because an equilibrium strategy y for the column player equalizes
the payoff that the row player gets for every pure strategy in his support and vice versa.
Hence we can write a linear program and compute the Nash equilibrium with the given
support. The following is a direct consequence of this observation and Theorem 6.

Corollary 9 If the payoff matrices R, C have constant rank, then we can compute an ezxact
Nash equilibrium in polynomial time. In particular if one of the players has a constant
number of pure strategies, we can compute a Nash equilibrium in polynomial time.

5 Discussion

Another attempt to prove the results of Section 3 would be to approximate the vectors
of a Nash equilibrium by vectors of small support. It is not difficult to see that we can
approximate any probability distribution vector by a vector of logarithmic support in the
loo norm with error at most 1/logn. However, approximating an equilibrium z*,y* in this
manner does not imply that the approximating vectors will form an e-equilibrium, for any
given fixed €. On the other hand it can be shown that an e-approximation in the /; norm



does yield an e-equilibrium, but such an approximation is not always possible (e.g. if the
Nash strategies are the uniform distributions).

An interesting open question is whether we can generalize the results of Section 3 to games
where the number of players is an increasing function of n. Another question would be to
generalize the result so that the incentive to defect won’t depend on the range of the payoff
matrices (which can be much higher than the expected payoff in any equilibrium). Finally
it would be interesting to extend the low-rank result of Section 4 to multiple player games.
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