
Algorithms for Sel�sh AgentsMechanism Design for Distributed ComputationNoam Nisan�AbstractThis paper considers algorithmic problems in a distributed settingwhere the participants cannot be assumed to follow the algorithm butrather their own self-interest. Such scenarios arise, in particular, whencomputers or users aim to cooperate or trade over the Internet. As suchparticipants, termed agents, are capable of manipulating the algorithm,the algorithm designer should ensure in advance that the agents' interestsare best served by behaving correctly.This exposition presents a model to formally study such algorithms.This model, based on the �eld of mechanism design, is taken from theauthor's joint work with Amir Ronen, and is similar to approaches takenin the distributed AI community in recent years. Using this model, wedemonstrate how some of the techniques of mechanism design can beapplied towards distributed computation problems. We then exhibit someissues that arise in distributed computation which require going beyondthe existing theory of mechanism design.1 IntroductionA large part of research in computer science is concerned with protocols andalgorithms for inter-connected collections of computers. The designer of suchan algorithm or protocol always makes an implicit assumption that the par-ticipating computers will act as instructed { except, perhaps, for the faulty ormalicious ones.With the emergence of the Internet as the platform of computation, this as-sumption can no longer be taken for granted. Computers on the Internet belongto di�erent persons or organizations, and will likely do what is most bene�cialto their owners { act \sel�shly". We cannot simply expect each computer onthe Internet to faithfully follow the designed protocols or algorithms. It is more�Institute of Computer Science, Hebrew U., Jerusalem and IDC, Herzliya. This researchwas supported by grants from the Israeli ministry of Science and the Israeli academy ofsciences. 1



reasonable to expect that each sel�sh computer will try to manipulate it for itsowners' bene�t. An algorithm or protocol intended for sel�sh computers musttherefore be designed in advance for this kind of behavior!Such protocols and algorithms will likely involve payments (or other trade)between the sel�sh participants. One can view this challenge (of designing proto-cols and algorithms for sel�sh computers) as that of designing automated traderules for the Internet environment. The normal practices of human trade, whileclearly relevant, cannot be directly applied due to the much greater complexityinvolved and due to the automated nature of the trade.The view taken in this paper is that of a systems' engineer that has certaintechnical goals for the global behavior of the Internet. We view the sel�shness ofthe participants as an obstacle to our goals, and we view the trade and paymentsinvolved as a way to overcome this obstacle. In economic terms, we desire avirtual \managed economy" of all Internet resources, but due to the sel�shnessof the participants we are forced to obtain it using the \invisible hand" of \freemarkets". Our goal is to design the market rules as to ensure the desired globalbehavior.We �rst present a formal model that allows studying these types of issues.The model relies on the rationality of the participants and is game-theoreticin nature. Speci�cally, it is based upon the theory of mechanism design. Themodel is directly taken from the author's joint work with Amir Ronen [18], andis similar in spirit to some models studied in the distributed AI community.After presenting the model we present some of the basic notions and resultsfrom mechanism design in our distributed computation setting. We do notintend here to give a balanced or exhaustive survey of mechanism design, butrather to pick and choose the notions that we feel are most applicable to ourapplications in distributed computation. Finally, we present some scenarios thatarise in distributed computation that require going beyond the existing theoryof mechanism design.Before getting into the model, we will mention some of the application areaswe have in mind, and shortly mention some of the existing work in computerscience along this and similar tracks.2 Sample ScenariosWe shortly sketch below three (somewhat related) application areas that we feelrequire these types \sel�sh algorithms". These application areas are each quitewide in their scope, involve complicated optimizations of resources, and directlyinvolve di�ering goals of the participants. Most of the works cited below lie inone of these areas.



2.1 Resource allocationThe aggregate power of all computers on the Internet is huge. In a \dreamworld" this aggregate power will be optimally allocated online among all con-nected processors. One could imagine CPU-intensive jobs automatically mi-grating to CPU-servers, caching automatically done by computers with freedisk space, etc. Access to data, communication lines, and even physical at-tachments (such as printers) could all be allocated across the Internet. Thisis clearly a di�cult optimization problem even within tightly linked systems,and is addressed, in various forms and with varying degrees of success, by alldistributed operating systems.The same type of allocation over the Internet requires handling an additionalproblem: the resources belong to di�erent parties who may not allow others tofreely use them. The algorithms and protocols may, thus, need to provide somemotivation for these owners to \play along".2.2 RoutingWhen one computer wishes to send information to another, the data usuallygets routed through various intermediate routers. So far this has been donevoluntarily, probably due to the low marginal cost of forwarding a packet. How-ever, when communication of larger amounts of data becomes common (e.g.video), and bandwidth needs to be reserved under various quality of service(QoS) protocols, this altruistic behavior of the routers may no longer hold. Ifso, we will have to design protocols speci�cally taking the routers' self-interestinto account.2.3 Electronic TradeMuch trade is taking place on the Internet and much more is likely to takeplace on it. Such trade may include various �nancial goods (stocks, currencyexchange, options), various information goods (video-on-demand, database ac-cess, music), many services (help desk, 
ower delivery, data storage), as well asreal goods (books, groceries, computers) . This trade will likely involve sophis-ticated programs communicating with each other trying to �nd \the best deal".In addition, this will also raise the possibility of various brokerage services suchas information providers, aggregators, and other types of agents. Clearly anysystem that enables such programs to e�ciently trade with each other needsto o�er general economic e�ciency while very strongly taking into account thefact that all participants have totally di�ering goals.



3 Existing WorkGame theory, Economics, and Computer ScienceIn recent years there have been many works that tried to introduce eco-nomic or game-theoretic aspects into computational questions. The approachpresented here is part of this trend, but is much narrower, taking speci�callythe direction of mechanism design. The reader interested in the wider view maystart his exploration e.g. with the surveys [8, 13], the book [21], the web sites[3, 1, 2], or the papers in the conference [4].Mechanism designThe �eld of mechanism design (also known as implementation theory) aimsto study how privately known preferences of many people can be aggregatedtowards a \social choice". The main motivation of this �eld is micro-economic,and the tools are game-theoretic. Emphasis is put on the implementation ofvarious types of auctions.In the last few years this �eld has received much interest, especially due to itsin
uence on large privatizations and spectrum allocations [16]. An introductionto this �eld can be found in [15, chapter 23] [20, chapter 10], and an in
uentialweb site in [17].Mechanism design in Computer ScienceOne may identify three motivations for combining mechanism design withcomputational questions.Auction implementation: As auctions become more popular as wellas more complicated, they are often implemented using computers andcomputer networks. Many computational implementation questions re-sult. These range from purely combinatorial ones regarding optimizationin complex combinatorial auctions to systems questions regarding com-munication and performance issues in wide-scale auctions.Leveraging Market Power: In the \real world" the invisible hand offree markets seems to yield surprisingly good results for complex opti-mization problems. This occurs despite the many underlying di�culties:decentralized control, uncertainties, information gaps, limited computa-tional power, etc. One is tempted to apply similar market-based ideas incomputational scenarios with similar complications, in the hope of achiev-ing similarly good results.Handling Sel�shness: This is the approach taken here, and it viewsmechanism design introduced into computational problems as a necessaryevil, required to deal with the di�ering goals of the participants.Even though these motivations are di�erent philosophically, research oftencombines aspects from all approaches. Below we shortly sketch some of previous



work done introducing mechanism design into di�erent branches of computerscience, without attempting to further classify them.Distributed AIIn the last decade or so, researchers in AI have studied cooperation andcompetition among \software agents". The meaning of agents here is verybroad, incorporating attributes of code-mobility, arti�cial-intelligence, user-customization, and self-interest.A sub�eld of this general direction of research takes a game theoretic analysisof agents' goals, and in particular uses notions from mechanism design [21][22] [7]. A related sub�eld of Distributed AI, sometimes termed market-basedcomputation [26] [8] [25], aims to leverage the notions of free markets in orderto solve distributed problems. These sub�elds of DAI are related to our work.Communication NetworksIn recent years researchers in the �eld of network design adopted a gametheoretic approach (See e.g. [11]). In particular mechanism design was appliedto various problems including resource allocation [12], cost sharing, and pricing[23].4 The ModelIn this section we formally present the model. It is taken from the author's jointwork with Amir Ronen [18].The model is concerned with computing functions that depend on inputsthat are distributed among n di�erent agents. A problem in this model has, inaddition to the speci�cation of the function to be computed, a speci�cation ofthe goals of each of the agents. The solution, termed a mechanism, includes, inaddition to an algorithm computing the function, payments to be handed outto the agents. These payments are intended to motivate the agents to behave\correctly".Subsection 4.1 describes what a mechanism design problem is. In subsec-tion 4.2 we de�ne what a good solution is: an implementation with dominantstrategies. Subsection 4.3 de�nes a special class of good solutions: truthful im-plementations, and states the well-known fact that restricting ourselves to suchsolutions loses no generality.4.1 Mechanism design problem descriptionIntuitively, a mechanism design problem has two components: the usual algo-rithmic output speci�cation, and descriptions of what the participating agentswant, formally given as utility functions over the set of possible outputs (out-comes).



De�nition 1 (Mechanism Design Problem) A mechanism design problemis given by an output speci�cation and by a set of agent's utilities. Speci�cally:1. There are n agents, each agent i has available to it some private input ti 2T i (termed its type). Everything else in this scenario is public knowledge.2. The output speci�cation maps to each type vector t = t1:::tn a set ofallowed outcomes o.3. Each agent i's preferences are given by a real valued function: vi(o; ti),called its valuation. This is a quanti�cation of its value from the outcomeo, when its type is ti, in terms of some common currency. I.e. if themechanism's outcome is o and in addition the mechanism hands this agentpi units of this currency, then its utility will be ui = pi + vi(o; ti)1. Thisutility is what the agent aims to optimize.In this paper we only discuss optimization problems. In these problems theoutcome speci�cation is to optimize a given objective function. We present thede�nition for minimization problems.De�nition 2 (Mechanism Design Optimization problem) This is amechanism design problem where the outcome speci�cation is given by a pos-itive real valued objective function g(o; t) and a set of feasible outcomes F . Therequired output is the outcome o 2 F that minimizes g.4.2 The MechanismIntuitively, a mechanism solves a given problem by assuring that the requiredoutcome occurs, when agents choose their strategies as to maximize their ownsel�sh utilities. A mechanism needs thus to ensure that players' utilities (whichit can in
uence by handing out payments) are compatible with the algorithm.Notation: We will denote (a1; :::ai�1; ai+1; :::an) by a�i. (ai; a�i) will denotethe tuple (a1; : : : an)De�nition 3 (A Mechanism) A mechanism m = (o; p) is composed of twoelements: An outcome o = o(a), and an n-tuple of payments p1(a):::pn(a).Speci�cally:1. The mechanism de�nes for each agent i a family of strategies Ai. Agenti can choose to perform any ai 2 Ai.2. The �rst thing a mechanism must provide is an outcome function o =o(a1:::an).1This is termed \semi-linear utility". In this paper we limit ourselves to this type ofutilities.



3. The second thing a mechanism provides is a payment pi = pi(a1:::an) toeach of the agents.4. We say that a mechanism is an implementation with dominant strategies(or in short just an implementation) if� For each agent i and each ti there exists a strategy ai 2 Ai, termeddominant, such that for all possible strategies of the other agents a�i,ai maximizes agent i's utility. I.e. for every a0i 2 Ai, if we de�neo = o(ai; a�i), o0 = o(a0i; a�i), pi = pi(ai; a�i), p0i = pi(a0i; a�i) ,then vi(ti; o) + pi � vi(ti; o0) + p0i� For each tuple of dominant strategies a = (a1:::an) the outcome o(a)satis�es the speci�cation.4.3 The Revelation PrincipleThe simplest types of mechanisms are those in which the agents' strategies areto simply report their types.De�nition 4 (Truthful Implementation) We say that a mechanism istruthful if1. For all i, and all ti, Ai = T i, i.e. the agents' strategies are to report theirtype. (This is called a direct revelation mechanism.)2. Truth-telling is a dominant strategy, i.e. ai = ti satis�es the de�nition ofa dominant strategy above.A simple observation, known as the revelation principle, states that withoutloss of generality one can concentrate on truthful implementations.Proposition 4.1 ([15], page 871) If there exists a mechanism that implementsa given problem with dominant strategies then there exists a truthful implemen-tation as well.Proof: (sketch) We let the truthful implementation simulate the agents' strate-gies. I.e. given a mechanism (o; p1; :::pn), with dominant strategies ai(ti), wecan de�ne a new one by o�(t1:::tn) = o(a1(t1):::an(tn)) and (p�)i(t1:::tn) =pi(a1(t1):::an(tn)). 25 Applying Existing Mechanism Design TheoryIn this section we present several well known mechanisms. While these mech-anisms are the usual ones one would �nd in a standard text on mechanismdesign, we present them in a distributed-computation setting. The implemen-tations provided are all truthful ones, i.e. they follow this pattern:



1. Each agent reports its input to the mechanism.2. The mechanism computes the desired outcome based on the reportedtypes.3. The mechanism computes payments for each agent.The challenge in these examples is to determine these payments as to ensurethat the truth is indeed a dominating strategy for all agents.5.1 MaximumStory:2A single server is serving many clients. At a certain time, the server canserve exactly one request. Each client has a private valuation ti for his requestbeing served. (The valuation is 0 if the request is not served.) We want themost valuble request to be served.Failed attempts:One might �rst attempt to simply ignore all payments (i.e. set pi = 0 for alli). This however is clearly insu�cient since it motivates each agent to exaggeratehis valuation, as to get his request executed. The second attempt would be tolet the winning agent pay his declaration. I.e. set pi = �t0i for the agent ithat declared the highest t0i (and pi = 0 for all others). This also fails since theagent with highest ti is motivated to reduce his declaration to slightly above thesecond highest valuation o�ered. This will result in his request still being served,and his payment reduced. In case agent i has imperfect information about theothers this strategic behavior may lead him to accidently declare a lower valuethan the second valuation, which will result in a sub-optimal allocation.Solution:The agent that o�ers the highest valuation for his request pays the secondhighest price o�ered. I.e. pi = �tj , where i o�ers the highest price and j thesecond highest. All other agents have pk = 0.Analysis:To see why this is a truthful implementation, consider agent i and considera lie t0i 6= ti. If this lie does not change the allocation, then nothing is gainedor lost by agent i since his payment is also una�ected by his own declaration.If this lie gets his request served, then t0i > tj > ti and he gains ti of utilityfrom his valuation of the served request, but he loses tj on payments, thus histotal utility would be ti � tj < 0, as opposed to 0 in the case of the truth. Onthe other hand, if his lie makes him lose the service, then his utility is now 0,as opposed to a positive number which it was in the truthful case.2This is an auction and the solution presented is Vickrey's well-known second price auction[24].



5.2 ThresholdStory:3A single cache is shared by many processors. When an item is entered intothe cache, all processors gain faster access to this item. Each processor i willsave ti in communication costs if a certain item X is brought into the cache.(I.e its valuation of loading X is ti > 0, and of not loading it, 0.) The cost ofloading X is a publicly known constant C. We want to load X i� Pi ti > C.Failed attempts:Wemay �rst attempt to just divide the total cost between the n participatingagents, i.e. set pi = �C=n for all i. This however motivates any agent withti > C=n to announce his valuation as greater than C, and thus assure thatX is loaded. We may, as a second attempt, let each agent pay the amountdeclared (or perhaps something proportional to it.) In this case, however, wewill be faced with a free-rider problem, where agents will tend to report lowervaluation than the true ones so as to reduce their payments. This, when doneby several agents, may result in the wrong decision of not loading X .Solution:In caseX is loaded, each agent pays a sum equal to the minimum declarationrequired from him in order to load X , given the other's declarations. I.e. theonly case where pi 6= 0, is when Pj 6=i tj � C < Pj tj , in which case pi =Pj 6=i tj � C (a negative number).The analysis is left to the reader. Alternatively, this example may be seento be a special case of the example below.This example can be generalized to the case where ti can be negative as well.5.3 Shortest PathStory:We have a communication network modeled by a directed graph G, and twospecial nodes in it x and y. Each edge e of the graph is an agent. Each agent ehas private information (its type) te � 0 which is the agent's cost for sending asingle message along this edge. The goal is to �nd the cheapest path from x toy (as to send a single message from x to y). I.e the set of feasible outcomes areall paths from x to y, and the objective function is the path's total cost. Agente's valuation is 0 if his edge is not part of the chosen path, and �te if it is. Wewill assume for simplicity that the graph is bi-connected.Solution:The following mechanism ensures that the dominant strategy for each agentis to report his true type te to the mechanism. When all agents honestly report3This is known as the \public project" problem, and the solution is known as the Clarketax [5].



their costs, the cheapest path is chosen: The outcome is obtained by a simpleshortest path calculation. The payment pe given to agent e is 0 if e is not inthe shortest path and pe = dG�e � (dG � t0e) if it is. Here t0e is the agents'reported input (which may be di�erent from its actual one), dG is the lengthof the shortest path (according to the inputs reported), and dG�e is the lengthof the shortest path that does not contain e (again according to the reportedtypes).Analysis:First notice that if the same shortest path is chosen with t0e as with te thenthe payment and thus utility of the agent does not change. A lie t0e > te willcause the algorithm to choose the shortest path that does not contain e asopposed to the (correct one) which does contain it i� dG�e�dG < t0e� te. Thisdirectly implies that e's utility would have been positive had e been chosen inthe path (as opposed to 0 when its not chosen), thus the truth is better. Asimilar argument works to show that t0e < te is worse than the truth.Many other graph problems, where agents are edges, and their valuationsproportional to the edges' weights, can be implemented by a VCG mechanism.In particular minimum spanning tree and max-weight matching seem naturalproblems in this setting. A similar solution applies to the more general casewhere each agent holds some subset of the edges.Algorithmic Problem: How fast can the payment functions be computed?Can it be done faster than computing n versions of the original problem? For theshortest paths problem we get the following equivalent problem: given a directedgraph G with non-negative weights, and two vertices in it x; y. Find, for eachedge e in the graph, the shortest path from x to y that does not use e. UsingDisjktra's algorithm for each edge on the shortest path gives an O(nm logn)algorithm. Is anything better possible? Maybe O(m logn)?5.4 Utilitarian FunctionsArguably the most important positive result in mechanism design is what isusually called the generalized Vickrey-Groves-Clark (VCG) mechanism [24] [10][5]. All previous examples are, in fact, VCG mechanisms. In this section wepresent the general case.The VCG mechanism applies to mechanism design optimization problemswhere the objective function is simply the sum of all agents' valuations.De�nition 5 An optimization mechanism design problem is called utilitarianif its objective function satis�es g(o; t) =Pi vi(o; ti).De�nition 6 We say that a direct revelation mechanism m = (o(t); p(t)) be-longs to the VCG family if



1. o(t) 2 argmaxo(Pni=1 vi(ti; o)).2. pi(t) = Pj 6=i vi(o(t); ti) + hi(t�i) where hi() is an arbitrary function oft�i.Theorem 5.1 (Groves [10]) A VCG mechanism is truthful.Proof: (sketch) Let d1; : : : ; dn denote the declaration of the agents andt1; : : : ; tn denote their real types. Suppose that truth telling is not a dominantstrategy, then there exists d; i; t; d0i such thatvi(ti; o(d�i; ti)) + pi(ti; o(d�i; ti)) + hi(d�i) <vi(ti; o(d�i; d0i)) + pi(ti; o(d�i; d0i)) + hi(d�i)But then nXi=1 vi(o(d�i; ti); ti) < nXi=1 vi(o(d�i; d0i); ti)In contradiction for the de�nition of o(). 2Thus a VCG mechanism essentially provides a solution for any utilitarian prob-lem (except for the possible problem that there might be dominant strategiesother than truth-telling). It is known that (under mild assumptions) VCG arethe only truthful implementation for utilitarian problems ([9]).5.5 More Issues in Mechanism DesignThe examples presented here demonstrate only the most basic notions from the�eld of mechanism design. Many more issues addressed by the theory of mech-anism design are applicable to the distributed computation setting. We brie
ymention just some of the issues commonly studied by mechanism design (andother branches of game theory) that we feel may �nd applications in distributedcomputation.Bayesian-Nash equilibrium: Our notion of a solution was very strong,requiring dominant strategies. Weaker notions of equilibrium are alsooften considered, in particular Bayesian-Nash equilibrium.Non semi-linear utilities: We assumed that the utility of each agent isadditive in the money. More general types of utilities may be considered,where money in
uences the utility in an arbitrary manner.Budgets: We did not put any requirements on the sums of money in-volved in a mechanism. At least two types of constraints are widely stud-ied: constraining the total money spent by the mechanism (either to aslarge a negative amount as possible, or to 0 { budget balance), and con-sidering budget limitations of the agents.



Common value models: We assumed that each agent has a known valu-ation function that is independent from the others. One may alternativelyassume a valuation that is common to all agents but is not fully knownby them.Repeated Games: We only considered a single instance of a problem.One may clearly consider repeated instances.Coalitions: We only considered manipulation by a single agent. Clearlyone may study coalitions of agents.6 Beyond Existing Mechanism DesignWe feel that the application of existing mechanism design in distributed compu-tation, as demonstrated above, is just a �rst step. Many of the considerationsof distributed computation are quite di�erent from the ones usually consideredin mechanism design. Addressing these considerations will thus require newresearch. In this section we exhibit several scenarios in distributed computa-tion that raise questions that indeed go beyond the current scope of mechanismdesign.6.1 Task SchedulingStory:A computer has k tasks it wishes to execute, and can execute each of themon any one of n servers. Each server i knows, for every task j, the time tijit requires to execute this task. Each server's cost is proportional to the timeit spends on executing the tasks assigned to it. Our goal is to have all taskscompleted as soon as possible (i.e. to minimize the completion time of the lasttask.)This problem was considered in [18]. Here are some of the issues raised bythis problem and addressed there. Similar issues arise in many other problemsin distributed computation.Issues:Non-utilitarian Problem: The goal in this example is non-utilitarian.Thus, the VCG mechanism cannot be applied and new mechanisms needto be invented.Impossibility: It is possible to prove that no mechanism perfectly solvesthis problem. As is common in Computer Science, one should try toovercome this impossibility. In particular, the following approaches maybe considered (and were all studied in [18]):



Approximation: Find a mechanism that approximates the optimalsolution as well as possible.Randomization: In Computer Science as well as in game theoryrandomization often helps. In turns out that for this problem, ran-domized mechanisms can provably do better than deterministic ones.Model Extensions: Every model is an imperfect abstraction ofreality. One may incorporate useful attributes of reality into themodel as to make an impossible result possible. In [18] the model wasextended by assuming that the mechanism need only compute thepayments after the tasks were actually executed, giving it additionalinformation.Computational Intractability: Even from a purely algorithmic pointof view, the task scheduling problem is intractable (NP-complete). Whenadding the requirements of a mechanism things only get worse. In partic-ular, standard ways of overcoming the computational intractability (suchas tractable approximations) have complicated interactions with the re-quirements of mechanism design.6.2 Maximum Independent SetStory:There are n processors connected in a linear array (i.e. each processor iis connected to i � 1 and to i + 1). Each processor wants to execute a singlejob, and values it at ti � 0. The problem is that executing the job requiresexclusive access to the common link with each of its neighbors. Thus no twoconsecutive processors can execute their job. Our goal is to execute the set oftasks with maximal valuation, i.e. to �nd an independent set S of processorsthat maximizes Pi2S ti.Model Restriction:In this story we want to �nd a decentralized solution. I.e. we want to designa protocol, that runs on these computers, using only the available communica-tion links, and without assuming any central trusted computer, or any othercommunication links.Solution:Our protocol has two phases a left-to-right phase and a right-to-left phase.In the left-to-right phase, each processor places a bid Ri for link on its right.These o�ers are computed by each processor in turn as follows: R1 = t1, andfor 1 < i < n, Ri = max(ti �Ri�1; 0). In the right-to-left phase each processorplaces a bid Li on the link to its left as follows: Ln = tn, and for 1 < i < n,Li = max(ti � Li+1; 0). Processor i wins the left link i� Li > Ri�1 and winsthe right link i� Ri � Li+1. It can execute its task (i.e. is chosen to be in S) if



it has won both links. In this case its payment is �pi = Ri�1 + Li+1 (i.e. thesecond price on each of links it has won).Analysis:There are many issues to consider here:Algorithmic correctness: One may verify that Ri is the di�erence be-tween the weight of the maximum weight independent set in 1:::i� 1 andthe weight of the maximum weight independent set in 1:::i. Similarly, Liis the di�erence between of the weights of the maximum weight indepen-dent sets in i + 1:::n and i:::n. Clearly i should be chosen to be in S ifti > Li+1+Ri�1 (ties can be broken arbitrarily), which is exactly what thisprotocol does. This protocol can be viewed as a dynamic programmingsolution of this problem.Domination of the Truth: Assume that the players' strategies arelimited to acting according to some �xed valuation t0i. Such a model maybe called the \honest but sel�sh" case. In this case one may observe thatthe protocol achieves the VCG mechanism that is a solution since theproblem is indeed utilitarian.Dishonesty: A more general model would allow all strategies made pos-sible by the protocol. In this case the processors could act according to adi�erent t0i in each phase. One may verify that in this model the truth isno longer dominant. Yet, truth is still a Nash equilibrium.Ensuring Honesty: There are various ways to augment the model as toforce the processors to be consistent in both phases, and thus essentiallyforce the \honest but sel�sh" situation. In particular, if processors i�1 andi+1 can communicate with each other then they can catch i's dishonesty.Such communication may alternatively be implicitly achieved by usingcryptographic signatures.Decentralized Payments: The payments in this solution were to begiven to some party outside of the n involved processors. It would havebeen nice to have a mechanism where the payments are only transferredbetween connected processors.6.3 Decentralized AuctionStory:A single item is to be auctioned over the Internet among n humans (eachwith his own computer).Restriction:



There is no trusted entity. In particular we do not trust the auctioneer tofaithfully execute the auction rules or to keep any secrets. In the absence ofsuch a trusted entity we would like to ensure two goals:� The auction is executed according to the published auction rules (e.g.second price).� No information about bids is leaked to any participant, beyond the resultsof the auction which become public knowledge. I.e. only the identity ofthe winner (but not his bid), and the amount of the second highest bid(but not the identity of the bidder) become known.Solution:The celebrated \oblivious circuit evaluation" cryptographic protocols [19, 14,6] exactly achieve this goal (as long as not too many of the participants colludeto lie). These cryptographic protocols can faithfully carry out any distributedcomputation without leaking any information to the participants. What cannot,in principle, be ensured by cryptography is that the participants reveal theirinputs. This, however, is ensured by the mechanism. We should note that thesecryptographic protocols, while theoretically tractable, are quite impractical.7 AcknowledgmentsThe notions expressed in this paper are derived from my joint work with AmirRonen, who has also helped with the writing of this paper. I thank Dov Mon-derer, Motty Perry, and Moshe Tennenholtz for helpful discussions.References[1] Comet group technical reports. Web Page:http://comet.ctr.columbia.edu/publications/techreports.html.[2] The information economy. Web Page:http://www.sims.berkeley.edu/resources/infoecon/.[3] Market-oriented programming. Web Page:http://ai.eecs.umich.edu/people/wellman/MOP.html.[4] First international conference on information and computation economiesice-98. Web Page: http://www.cs.columbia.edu/ICE-98/, October 1998.[5] E. H. Clarke. Multipart pricing of public goods. Public Choice, pages17{33, 1971.



[6] C. Crepeau D. Chaum and I. Damgard. Multiparty unconditionally secureprotocols. In 20th STOC, 1988.[7] Eithan Ephrati and Je�rey S. Rosenschein. The clarke tax as a concen-sus mechanism among automated agents. In Proceedings of the nationalConference on Arti�cial Intelligence, pages 173{178, July 1991.[8] Donald F. Ferguson, Christos Nikolaou, and Yechiam Yemini. Economicmodels for allocating resources in computer systems. In Scott Clearwa-ter, editor, Market-Based Control: A Paradigm for Distributed ResourceAllocation. World Scienti�c, 1995.[9] J. Green and J.J. La�ont. Characterization of satisfactory mechanism forthe revelation of preferences for public goods. Econometrica, pages 427{438, 1977.[10] T. Groves. Incentives in teams. Econometrica, pages 617{631, 1973.[11] Y.A Korilis, A. A. Lazar, and A. Orda. Architecting noncooperative net-works. IEEE Journal on Selected Areas in Communication (Special Issue onAdvances in the Fundamentals of Networking), 13(7):1241{1251, September1991.[12] A.A. Lazar and N. Semret. The progressive second price auction mechanismfor network resource sharing. In 8th International Symposium on DynamicGames, Maastricht, The Netherlands, July 1998.[13] Nathan Lineal. Game theoretic aspects of computing. In Handbook of GameTheory, volume 2, pages 1339{1395. Elsevier Science Publishers B.V, 1994.[14] S. Golwasser M. Ben-Or and A. Wigderson. Completeness theorems forfault-taulerent distributed computing. In 20th STOC, 1988.[15] A. Mas-Collel, W. Whinston, and J. Green. Microeconomic Theory. Oxforduniversity press, 1995.[16] J. McMillan. Selling spectrum rights. Journal of Economic Perspectives,pages 145{162, 1994.[17] Market design inc. Web Page: http://www.market-design.com.[18] Noam Nisan and Amir Ronen. Algorithmic mechanism design. Avilable athttp://www.cs.huji.ac.il/~amiry.[19] S. Micali O. Goldreich and A. Wigderson. Proofs that yield nothing buttheir validity and a methodology of cryptographic protocol design. In 27thFOCS, 1986.



[20] M. J. Osborne and A. Rubistein. A Course in Game Theory. MIT press,1994.[21] Je�rey S. Rosenschein and Gilad Zlotkin. Rules of Encounter: DesigningConventions for Automated Negotiation Among Computers. MIT Press,1994.[22] Tuomas W. Sandholm. Limitations of the vickrey auction in computationalmultiagent systems. In Proceedings of the Second International Conferenceon Multiagent Systems (ICMAS-96), pages 299{306, Keihanna Plaza, Ky-oto, Japan, December 1996.[23] S. Shenkar, Clark D. E., and Hertzog S. Pricing in computer networks:Reshaping the research agenda. ACM Computational Comm. Review, pages19{43, 1996.[24] W. Vickrey. Counterspeculation, auctions and competitive sealed tenders.Journal of Finance, pages 8{37, 1961.[25] W.E. Walsh and M.P. Wellman. A market protocol for decentralized taskallocation: Extended version. In The Proceedings of the Third InternationalConference on Multi-Agent Systems (ICMAS-98), 1998.[26] W.E. Walsh, M.P. Wellman, P.R. Wurman, and J.K. MacKie-Mason.Auction protocols for decentralized scheduling. In Proceedings of TheEighteenth International Conference on Distributed Computing Systems(ICDCS-98), Amsterdam, The Netherlands, 1998.


