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Laboratory for Computer Science
M.I.T.

545 Technology Square
Cambridge Massachusetts 02139 USA

1. INTRODUCTION
The concept of oblivious transfer (O.T.) that was introduced by Halpern and Rabin [HR]

turned out to be a very useful tool in designing cryptographic protocols. The related notion
of "one-out-of-two oblivious transfer" was proposed by Even, Goldreich and Lempel in [EGL]
together with some applications. Some more applications of this protocol can be found in
recent papers [BCR], [GMW]. So far, the two notions where believed to be closely related but
not known to be equivalent. This paper presents a proof that these two notions are computa-
tionally equivalent.

Essentially, we show a protocol for "one-out-of-two oblivious transfer", based on the
existence of a protocol for the oblivious transfer problem. The reduction presented does not
depend on any cryptographic assumption and works independently of the implementation of
O.T.. The implications of this reduction are:

-there exists a protocol for ANDOS [BCR] if and only if there exists a protocol for O.T.
-the completeness theorem of [GMW] can be based on the existence of O.T.

2. DEFINITIONS
Let us first remind the reader the flavours of O.T. we are considering. The concept of

oblivious transfer (O.T.) was first introduced by Halpern and Rabin in [HR]. Essentially the
O.T. is a two-party protocol such that:

_ ______________
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Definition_ ________ 1: (O.T.)

-Alice knows one bit b .
-Bob gets bit b from Alice with probability 2

1_ _.
-Bob knows whether he got b or not.
-Alice does not know whether Bob got b or not.

The related notion is the "one-out-of-two oblivious transfer" defined by Even, Goldreich and
Lempel in [EGL]. This other protocol is:

Definition_ ________ 2: (one-out-of-two O.T.)

-Alice knows two bits b 0 and b 1.
-Bob gets bit bk and not bk! with Pr (k =0) = Pr (k =1) = 2

1_ _

-Bob knows which of b 0 or b 1 he got.
-Alice does not know which bk Bob got.

In both these cases, the outcome of the transfer cannot be forced or influenced by either Alice
or Bob. Although the structure of these protocols is extremely similar, so far nobody had pro-
ven their equivalence. Since the fact that O.T. can be achieved from one-out-of-two O.T. is
trivial, the problem essentially is to show how to achieve one-out-of-two O.T. from O.T..

3. PROTOCOL
Before going into the explanation of the protocol, let us introduce a generalization of the

O.T. protocol in the following way and consider the general case instead of the specific case.
We define the p -O.T. to be a protocol such that:

Definition_ ________ 3: (p -O.T.)

-Alice knows one bit b .
-Bob gets bit b from Alice with probability p .
-Bob knows whether he got b or not.
-Alice does not know whether Bob got b or not.

3.1. General idea
The general idea of the protocol is to use the p -O.T. protocol many times over random

bits until it is very likely that it worked roughly pn times. The trick is to choose n large
enough so that the p -O.T. protocol works at least 3

2_ _pn of the time and not more than 3
4_ _pn of

the time. Then to get a bit, two disjoint subsets of size 3
2_ _pn will be used, one of which will



contain only indices of some p -O.T. that worked and the other will necessarily contain some
indices of p -O.T. that did not work. Then the bits of each subset will be XORed together
with one of the two bits to be disclosed.

3.2. Details of the protocol
Assume Alice owns b 0, b 1 two secret bits. To disclose one of them to Bob without

knowing which one Bob gets, they can do the following for p " 4
3_ _:

Protocol_ ______ for one-out-of-two O.T.

Alice and Bob agree on a security parameter s .
Alice chooses at random Ks bits r 1,r 2, . . . ,rKs for some constant K to be

later determined.
For each of these Ks bits Alice uses the p -O.T. protocol to disclose the bit ri to Bob

with probability p .
Bob selects U ={i 1,i 2, . . . ,i#s } and V ={i#s +1,i#s +2, . . . ,i 2#s } where #s =

$
%
% 3

2Kps_ ____
&
%
%

with U'V =( and such that he knows rij for each ij)U .
Bob sends (X ,Y )=(U ,V ) or (X ,Y )=(V ,U ) to Alice at random.
Alice computes m 0=x)X+ rx and m 1=y)Y+ ry .
Alice returns to Bob k , bk + m 0 and bk! + m 1 for a random bit k .
Bob computes u)U+ ru){m 0,m 1} and uses it to get his secret bit.

If we have p > 4
3_ _ then they use the protocol for p = 4

3_ _ with a different value of K as suggested
below.

4. ANALYSIS
We claim the following result about this protocol:

Theorem:_ _______
For an appropriately chosen constant K ,

Pr (Bob gets at least one of b 0, b 1)*1+2+s and Pr (Bob gets more than one of b 0, b 1)"2+s .

Proof:_ _____
Assume first that p " 4

3_ _. Name xi the random variable such that

xi =

,
%
-
%
.
1 if Bob did get ri

0 if Bob did not get ri

First notice that by definition Pr (xi =1) = 1+Pr (xi =0) = p . Consider the random variable



Xi =
j =1/

i xj . Since the xi ’s are independent random variables, then Xi is distributed with a bino-

mial distribution. According to Bernshtein’s Law of Large Numbers [Kr]

Pr ( 0 i
Xi_ __+p 0 *1) " 2e+i 12

for every 1 such that 0<1"p (1+p ). In particular if we set i =Ks and 1= 4
p_ _ we get

0<1"p (1+p )

because p " 4
3_ _ and also we get

Pr ( 0 Ks
XKs_ ___+p 0 * 4

p_ _) " 2e+ 16
Ksp 2_ ____

" 2+s

for K * p 2
12_ __. However, what we really are interrested in is

Pr (Bob gets at least one of b 0, b 1) and Pr (Bob gets more than one of b 0, b 1)

But we have that

*1+Pr (p + Ks
XKs_ ___> 3

p_ _+ Ks
1_ __)

=1+Pr (p + Ks
XKs_ ___> 3

p_ _+ Ks
3

2Kps_ ____+
$
%
% 3

2Kps_ ____
&
%
%_ ____________)

=1+Pr (XKs <
$
%
% 3

2Kps_ ____
&
%
%
)

=1+Pr (Bob gets none of b 0, b 1)
Pr (Bob gets at least one of b 0, b 1)

Since s *1,K * p 2
12_ __ and p 2"p we get,

*1+2+s
*1+Pr ( 0 Ks

XKs_ ___+p 0 * 4
p_ _)

*1+Pr (p + Ks
XKs_ ___> 4

p_ _)
*1+Pr (p + Ks

XKs_ ___> 3
p_ _+ 12

p_ __)

and

"2+s
"Pr ( 0 Ks

XKs_ ___+p 0 * 4
p_ _)

"Pr ( 0 Ks
XKs_ ___+p 0 * 3

p_ _)
=Pr ( Ks

XKs_ ___+p * 3
p_ _)

"Pr (XKs *2 3
2Kps_ ____)

=Pr (XKs *2
$
%
% 3

2Kps_ ____
&
%
%
)

Pr (Bob gets more than one of b 0, b 1)

Now, let’s see the case p > 4
3_ _.



*1+2+s
*Pr (Bob gets at least one of b 0, b 1 0 p = 4

3_ _)
Pr (Bob gets at least one of b 0, b 1)

whenever K * 3
64_ __. And also

"2+s
=p Ks
=Pr (XKs =Ks )

Pr (Bob gets more than one of b 0, b 1)

for K *
lg p

1_ _
1_ _____. So K *max ( 3

64_ __,
lg p

1_ _
1_ _____) is a sufficient condition for our purpose.

QED.

Essentially, this theorem is claiming that Bob will get one of the bits except with an exponen-
tially small probability, and Alice knows that he cannot get more than one of them except
also with an exponentially small probability. In other words, this protocol achieves the one-
out-of-two O.T. requirements with probability 1+2+s .

5. APPLICATIONS
In [BCR] one can find a reduction between a problem named AN2BP (All or Nothing 2

Bits Problem) and a very general disclosure problem: ANDOS (All or Nothing Disclosure of
Secrets). Essentially AN2BP is identical to one-out-of-two O.T. except that Bob choses the
random bit k used by Alice to decide which bit he gets. So the protocol we describe above
accomplishes AN2BP if k is supplied by Bob. This reduction leads to the conclusion that
ANDOS can be achieved from any p -O.T., for any constant p . Some more generalizations of
O.T. can also be used as basis for reductions and will be explored in a further paper.

In [GMW], a completeness theorem for interactive protocol is presented based on the
existence of one-way functions and one-out-of-two O.T. protocols. This completeness
theorem can now be based on the existence of p -O.T. and one-way functions. It seems possi-
ble that p -O.T. is easier to construct directly than one-out-of-two O.T., in general.

6. OPEN PROBLEMS
An interresting problem is to transform an O.T. in which Alice learns with probability q

whether Bob got the bit b or not, or an O.T. in which Bob always learns a bias about b into
a one-out-of-two O.T.. Also it would be very interresting to find a way of achieving one of
these variations only using one-way functions.
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