Extending the TPTP Language to Higher-Order
Logic with Automated Parser Generation

Allen Van Gelder! and Geoff Sutcliffe?

! University of California at Santa Cruz, USA, http://www.cse.ucsc.edu/~avg
2 University of Miami, USA, geoff@cs.miami .edu

Abstract. A stable proposal for extending the first-order TPTP (Thou-
sands of Problems for Theorem Provers) language to higher-order logic,
based primarily on lambda-calculus expressions, is presented. The pur-
pose of the system is to facilitate sharing of theorem-proving problems in
higher-order logic among many researchers. Design goals are discussed.
BNF2, a new specification language, is presented. Unix/Linux scripts
translate the specification document into a lez scanner and yacc parser.

1 Introduction

The goal of this work is to extend the current TPTP (Thousands of Problems
for Theorem Provers) language [SZS04] to include adequate support for higher-
order logic, while continuing to recognize the existing first-order language. It
was motivated by a panel discussion at the Workshop on Experimentally Suc-
cessful Automated Reasoning in Higher-Order Logic held in conjunction with
LPAR-12, December 2005. The panel discussion conveyed the desire to have a
common language in which various researchers could express benchmark prob-
lems in higher-order logics that would be contributed to a common library along
the lines of the TPTP problem library [SS98].

The new language developed in this project is tentatively named HOTPTP.
Some of the design goals were

1. The rules of the language should be simple and regular, so that humans can
understand them without too much trouble.

2. The rules of the language should be presented in a specification document
that has sufficient formality and rigor to be unambiguous, yet is not so
technical and complicated that its meaning is obscured.

3. The language should be amenable to straightforward automated parser gen-
eration, with established tools such as lex and yacc, or flex and bison. These
tools accept LALR-1 languages. It would be undesirable to rely on tricks
and extensions that might be supported in one tool and not another.

4. Tt should be straightforward to set up a Prolog parser for the language, using
Prolog’s read () procedure to accomplish most of the parsing drudgery.
The rules of the TPTP language, as released with TPTP v3.0.0, already achieved
goals (1), (2), and (4) above quite well. The first step of the project was to
achieve goal (3). During this initial phase, a few ambiguities were discovered

in the existing language, and minor revisions of the rules were implemented to
remove these ambiguities without changing the underlying language. Following
that work, the task of extending the language to accommodate higher order
constructs began.

Briefly, the contributions arising from this project are:

1. The development of BNF2, a new variant of Backus-Naur form. BNF2 is
oriented toward the modern practice of two-level syntax for programming
languages and is easy for humans to read.

2. Unix/Linux scripts to translate BNF2 into input readable by lez and yacc.

3. Stable BNF2 rules that extend the TPTP language and accept a variety of
higher-order logic expressions in a human-readable language.

Software and documents are at http://www.cse.ucsc.edu/"avg/TPTPparser.

2 Specifications with BNF2

The TPTP language was specified in TPTP v3.0.0 using the original standard
Backus-Naur form (BNF) [Ne60], with informal explanations to get over some
rough spots. In this simple and easy-to-read format, which is found in many
programming-language texts, grammar symbols are enclosed in < >, and the
only meta-symbols are the production symbol “::=” the alternative symbol
“1”, and the repetition symbol “*”; any other character sequence stands for
itself, and is called a self-declared token. More sophisticated variants have been
proposed over the years; see Section 5.

While trying to write scripts to translate BNF into inputs for lez and yacc
it was realized that standard BNF is ill-suited for specifying tokens. That is,
the modern two-level style of programming-language specification defines tokens
using regular expressions, and defines grammar symbols using context-free pro-
duction rules. A lexical analyzer parses the raw input into tokens, while the
production rules treat tokens as terminal symbols. This distinction is blurred
in standard BNF. Another aspect of the TPTP language that was observed
was that some production rules went beyond specifying the form of the input,
and specified a list of acceptable words. This presented a conflict in that such
words became self-declared tokens. Without making a context-sensitive lexical
analyzer, such words became unavailable for user identifiers.

To overcome these limitations of standard BNF we designed BNF2, a simple
extension of BNF that preserves the easy-to-read format for production rules
and adds different formats to specify semantic rules, tokens, and macros for
tokens. Semantic production rules are ignored for purposes of syntactic parsing,
but are available to specify more detail about the semantic content of certain
sentential forms. All the extensions are implemented by using additional meta-
symbols to specify various rule types, according to the following table. As the
table shows, a symbol that has a semantic rule must also have a normal grammar
rule if it appears on the right side of any normal grammar rule. The string “<=>"
and following strings are self-declared tokens: grammar symbols must consist of
alphanumerics. The right sides of token and macro rules are lex-ready regular
expressions, except that “< >” need to be converted to “{ }”.

Design
Language

Specification
Revise i .
in BNF2 ranslation

/ \ scripts

Human Inputs to
Review lex, yacc

\):acc, lex
Errors,Revise hand-code

Source
Prolog Code (C)

Parser compile

with \
Semantics Executable
Parser

Errors,Revise

Test on HOL Examples,
TPTP Library, —
and TSTP Library

DONE
(for now)

Fig. 1. Overview of the system evaluate a proposed HOTPTP language. Human ac-
tivities are shown in talics.

Meta- Rule
Symbol Type Ezamples (some are simplified from the TPTP language)
::= Grammar <TPTP input> ::= <annotated formula> | <comment>
<nonassoc op> ::=<=> | => | <= | <>
<formula role> ::= <lower word>
:== Semantic <formula role> :== axiom | conjecture | lemma |
theorem | negated_conjecture
::— Token <lower word> ::- <lower><alphanum>*
::= Macro <lower> 1 [a-z]

<alphanum> ::: [A-Za-z0-9_]

3 System Description

This section describes the system that evaluates a proposed HOTPTP language,
based on a BNF2 specification document produced manually. The system in-
cludes both manual and automated elements. This is not a system to process
an arbitrary BNF2 document; its main purpose is to support TPTP-related
development. Figure 1 provides an overview.

The primary automated part of the system generates an executable parser
from a BNF2 specification document for HOTPTP, following the right branch
of the diagram. This parser is extremely simple, to ensure that the input being
checked is really in the language of the specification document. The first step to
generate a parser is to translate the (ASCII text) BNF2 specification document,
say hotptp-bnf2.txt, into a pair of files, hotptp-1.1lex0 and hotptp-1.y,

which are input files for lez (or flex) and yacc (or bison). Unix/Linux scripts
accomplish this translation, invoking sed, awk, grep, sort, etc. No errors are de-
tected during this step. There is a clear correspondence between grammar rules
in hotptp-bnf2.txt and hotptp-1.y. Tokens have mnemonic names and are
easy to locate in hotptp-1.1lex0.

The analysis and compilation of hotptp-1.y by yacc or bison is a critical
step. Grammar errors and ambiguities are often located here after the BNF2
document has passed human inspection. The default library routines are used for
all procedures that are expected to be supplied by the programmer. A standard
semantic action is attached to each grammar rule, which builds a naive parse
tree for each sentence, which may be printed in verbose mode. A syntax error
causes “syntax error” on the stderr stream and a nonzero exit code; the exit
code is zero upon success.

Testing against the full TPTP Problem library requires several minutes. All
files with extension “.p” should be accepted, whereas the TSTP library con-
tains files that are known to have syntax errors. The most volatile files are the
HOL examples, which use the higher order extensions. When a syntax error
or unexpected parse tree occurs, analysis is needed to determine if fault lies
with the formula or the language specification. Based on available examples, the
HOTPTP language has stabilized after about ten iterations of the left branch of
the system diagram.

4 The HOTPTP Syntax Proposal

The complete BNF2 document for the proposed HOTPTP syntax is available as
hotptp-bnf2.txt at the URL given at the end of Section 1. The following ex-
ample illustrates many of the features added to express higher order constructs.
TPTP follows the Prolog convention that variables begin with capital letters,
and uses “?” for 4 and “!” for V.

hof (1, definition,
set_union := lambda [A: $type]: lambda [D: ((A-> $0)-> $o), X: Al:
7 [S: (A-> $0)]: ((D@S) & (S @X))).

[13

The new operator “:=" permits a definition at the top level of a “formula”
(Hudak uses “=” [Hud89]). Other new operators are: “lambda” for lambda ab-
straction, “@” for application, and “->” for type mappings. The colon “:” oper-
ator has several new meanings, for typing and lambda expressions. Also, “~” is a
synonym for lambda and “>” is a synonym for “~>”. We call these new operators
the HOF operators.

Logical operators and HOF operators can be mixed in A/@ expressions,,
subject to using parentheses as needed. Following the general principle in the
TPTP language, an apply expression, using one or more binary “@” opera-
tors, must be parenthesized; however, the unary operator AX and its argument
need not be. Note that “@” is left-associative, “->” is right-associative, and
“:” is right-associative, following usual lambda-calculus conventions. Associa-
tivities of existing TPTP operators carry over. The lambda expression shown is:
AA:1. AD:((A—0)—0). AX:A. 3S:(A—0). ((D @ S) A (S @ X)).

Variables can be typed at the point where they are bound, but not elsewhere.
Typing is not required. Builtin base types are $type (the set of types), $i (the
set of individuals), and $o (the set of truth values). User-defined base types
can be constants or functional terms. Compound types may be built from base
types with “->”. Constants can be typed where they occur in a formula; the
syntax is (c: (int-> int)) or (c: A),etc. Other expressions cannot be typed.
For example, (g(U, V) : (int-> int-> int)) is impossible (but the apply
expression (g: (int-> int-> int)) @ U @ V is accepted).

Operators other than the HOF operators can be treated as constants by
enclosing them in parentheses, as in (&) or (7) or (=) etc. The expression
((&) @ X @ Y) is accepted.

A first-order style functional term can appear where a A/@ expression is
needed, but A\/@/— expressions cannot appear inside a functional term. That is,
p((S @ X)) is impossible, but (S @ p(X)) is accepted.

5 Related Work and Acknowledgments

Other variants of BNF have been proposed before BNF2. Extended BNF (EBNF)
was designed by a standards committee to have great generality but is quite
complicated, with about a dozen meta-symbols, and does not distinguish tokens
from grammar symbols. Labeled BNF (LBNF) is designed to generate parsers
automatically [FRO05], and distinguishes tokens from grammar symbols, but is
even more complicated than EBNF.

HOTPTP requirements were culled from Hudak’s exposition of lambda calcu-
lus [Hud89], and descriptions of Cogq [FeRL], LF [HHP93], and ELF [Pfe94]. We
thank Chad Brown and Chris Benzmiiller for contributing examples of formulas
that should be expressible in HOTPTP syntax, based on their work [BB035].

References

[BB05] C. Benzmiiller and C. Brown. A Structured Set of Higher-Order Problems.
In Proc. 18th Theorem Proving in Higher Order Logics, pages 66-81, 2005.

[FeRL] D. Felty et al. The Coq Proof Assistant. http://pauillac.inria.fr/coq, URL.

[FRO5] M. Forsberg and A. Ranta. The Labelled BNF Grammar Formalism. Tech-
nical report, Chalmers, Gothenburg, Sweden, 2005.
http://www.cs.chalmers.se/~markus/BNFC.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics.
Journal of the ACM, 40(1):143-184, 1993.

[Hud89] P. Hudak. Conception, Evolution, and Application of Functional Program-
ming Languages. ACM Computing Surveys, 21:359-411, 1989.

[Ne60] P. Naur et al. Report on Algorithmic Language ALGOL 60. Communications
of the ACM, 3:299-314, 1960.

[Pfe94] F. Pfenning. ELF: A meta-language for deductive systems (system descrip-
tion). In CADE, 1994.

[SS98] G. Sutcliffe and C.B. Suttner. The TPTP Problem Library: CNF Release
v1.2.1. Journal of Automated Reasoning, 21(2):177-203, 1998.

[SZS04] G. Sutcliffe, J. Zimmer, and S. Schulz. TSTP Data-Exchange Formats for Au-
tomated Theorem Proving Tools. In Distributed Constraint Problem Solving
and Reasoning in Multi-Agent Systems, pages 201-215. IOS Press, 2004.

