

Modeling CSC398 Autonomous Robots

Ubbo Visser

Department of Computer Science University of Miami

October 24, 2024

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

- **1** [Modeling and state estimation](#page-2-0)
- ² [Examples](#page-10-0)

⁴ [Probabilities](#page-68-0)

(ロ) (個) (ミ) (ミ) = ミ のQ(0)

Modeling

• The model represents the current state of the environment.

K ロ → K 御 → K 至 → K 至 → 一至 → の Q Q →

Modeling

• The model represents the current state of the environment.

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

- All sensors of a physical robot are noisy.
- The model can never be exact.

Modeling

- The model represents the current state of the environment.
- All sensors of a physical robot are noisy.
- **Q** The model can never be exact.
- Robots can only estimate states using probabilistic methods for example.

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

- \bullet Determines a state X_t that changes over time using a sequence of measurements z_t and u_t .
	- \bullet z_t : measurement
	- u_t : state transition measurement

- \bullet Determines a state X_t that changes over time using a sequence of measurements z_t and u_t .
	- \bullet z_t : measurement
	- u_t : state transition measurement
- Useful if a state can not be accurately and directly measured (which means every state for a physical robot).

- \bullet Determines a state X_t that changes over time using a sequence of measurements z_t and u_t .
	- \bullet z_t : measurement
	- u_t : state transition measurement
- Useful if a state can not be accurately and directly measured (which means every state for a physical robot).
	- **e** filter noise

- \bullet Determines a state X_t that changes over time using a sequence of measurements z_t and u_t .
	- \bullet z_t : measurement
	- u_t : state transition measurement
- Useful if a state can not be accurately and directly measured (which means every state for a physical robot).

KED KARD KED KED E YORA

- **e** filter noise
- infer a state from measurements

- \bullet Determines a state X_t that changes over time using a sequence of measurements z_t and u_t .
	- \bullet z_t : measurement
	- \bullet u_t : state transition measurement
- Useful if a state can not be accurately and directly measured (which means every state for a physical robot).

KED KARD KED KED E YORA

- **a** filter noise
- **a** infer a state from measurements
- Modeling in our soccer agent
	- Ball tracking, opponent localization (and teammates), self-localization, orientation estimation (upright vector).

Kロト K部ト K目ト K目ト 「目」 のQ (V)

Examples

ı

K ロ → K 倒 → K ミ → K ミ → ニ ミ → の Q (*

Examples

• How noisy can measurements be?

- How noisy can measurements be?
- How can a state estimation be robust despite all the errors?

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

RoboCup Small-Size League:

RoboCup Small-Size League:

 \times ,y positions as measurement $z_t.$

RoboCup Small-Size League:

- \times ,y positions as measurement $z_t.$
- . Only noisy measurements, we need the actual state (the model).

RoboCup Small-Size League:

- \times ,y positions as measurement $z_t.$
- . Only noisy measurements, we need the actual state (the model).

RoboCup Small-Size League:

- \times ,y positions as measurement $z_t.$
- Only noisy measurements, we need the actual state (the model).

• Problem with two robots: wrong perceptions on other robot.

Obstacle avoidance using a laser range finder:

There can be several different errors in the measurements.

Obstacle avoidance using a laser range finder:

There can be several different errors in the measurements.

Obstacle avoidance using a laser range finder:

• There can be several different errors in the measurements.

Obstacle avoidance using a laser range finder:

- **•** There can be several different errors in the measurements.
- The general model for a beam based sensor is a mixture of several distributions.

Obstacle avoidance using a laser range finder:

- **O** There can be several different errors in the measurements.
- The general model for a beam based sensor is a mixture of several distributions.

• Knowledge about the behavior of a sensor (the sensor model) is very important for a robust state estimation.

3D ball-tracking with a camera:

3D ball-tracking with a camera:

Uncertainty, especially the distance of the ball to the camera.

3D ball-tracking with a camera:

- Uncertainty, especially the distance of the ball to the camera.
- State in world coordinates and should include the velocity.
- A single observation does not contain much information.

3D ball-tracking with a camera:

- Uncertainty, especially the distance of the ball to the camera.
- State in world coordinates and should include the velocity.
- A single observation does not contain much information.
- Consider only possible trajectories to reduce uncertainty.

3D ball-tracking with a camera:

- Uncertainty, especially the distance of the ball to the camera.
- State in world coordinates and should include the velocity.
- A single observation does not contain much information.
- Consider only possible trajectories to reduce uncertainty.

• Knowledge about the behavior of the ball and physics is useful (state transition model).

Self-localization in 1D with limited sensors:

Self-localization in 1D with limited sensors:

Self-localization in 1D with limited sensors:

 \bullet Door sensor \rightarrow ambiguous.

Even a sequence of measurements z_t is not enough to localize.

세미 시 세 ラ 시 모 시 시 된 시 그런 시

 OQ

Self-localization in 1D with limited sensors:

- \bullet Door sensor \rightarrow ambiguous.
- Even a sequence of measurements z_t is not enough to localize.
- Another sensor needed: sensor to measure wheel rotations.

세미 시 세 ラ 시 모 시 시 된 시 그런 시 OQ

Self-localization in 1D with limited sensors:

- \bullet Door sensor \rightarrow ambiguous.
- Even a sequence of measurements z_t is not enough to localize.

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

- Another sensor needed: sensor to measure wheel rotations.
- \bullet Measurements u_t needed (odometry motion model).

General state estimation

K ロ → K 倒 → K ミ → K ミ → ニ ミ → の Q (*

General state estimation

For one given observation there is a high uncertainty and ambiguity.

General state estimation

- For one given observation there is a high uncertainty and ambiguity.
- The state estimation gets a sequence of measurements, so the estimation of X_t is based on all measurements $z_0,...,z_t$ and $u_0,...,u_t.$

 $4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi + 4 \Box$

General state estimation

General state estimation:

General state estimation

General state estimation:

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

General state estimation

General state estimation:

イロト (個)トイミト (ミ)トー ミー りん(^

• Problems: more measurements with every time time step \rightarrow increasing amount of computation.

Markov assumptions

- Markov assumption 1: The measurement z_t depends only on the state X_t and a random error.
- Markov assumption 2: The state transition measurement u_t only depends on the states X_t and X_{t+1} and a random error.

KED KARD KED KED E YORA

Markov process

Bayesian network with the measurements u_t and z_t :

イロト イ団ト イモト イモト

 \equiv

 $\circledcirc \circledcirc \circledcirc$

• The states x_t are hidden.

Recursive state estimation $\overline{/}$ filter

Recursive state estimation:

Recursive state estimation / filter

Recursive state estimation:

 X_{t} includes all the knowledge from the measurements before.

Recursive state estimation / filter

Recursive state estimation:

 X_{t} includes all the knowledge from the measurements before.

イロト イ押ト イヨト イヨト

 \equiv

 OQ

Needed for X_t is only X_{t-1} , z_t and u_t .

Recursive state estimation / filter

Recursive state estimation:

- X_{t} includes all the knowledge from the measurements before.
- Needed for X_t is only X_{t-1} , z_t and u_t .
- Belief X_t is updated using only the new measurements \rightarrow constant time for each step.

State estimation

- **•** Sensor model and state transition model needed.
- Update belief X_t using
	- \bullet z_t and sensor model.
	- u_t and motion model and knowledge about dynamics in the environment.

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

Example state estimation

イロン イタン イミン イミン \equiv OQ

イロト イ部 トイミト イミト \equiv OQ

Example state estimation

 $\mathcal{A} \equiv \mathcal{F} \rightarrow \mathcal{A} \equiv \mathcal{F} \rightarrow \mathcal{A} \equiv \mathcal{F} \rightarrow \mathcal{A}$ \equiv OQ

 $\mathcal{A} \equiv \mathcal{F} \rightarrow \mathcal{A} \equiv \mathcal{F} \rightarrow \mathcal{A} \equiv \mathcal{F}$ \equiv OQ

Example 1: Small-Size League or HSR in RoboCanes Lab

Example 1: Small-Size League or HSR in RoboCanes Lab

State, z_t , u_t , the sensor model and prediction? State: position x, y, θ and speed x', y', θ'

Example 1: Small-Size League or HSR in RoboCanes Lab

State, z_t , u_t , the sensor model and prediction?

- State: position x, y, θ and speed x', y', θ'
- z_t: x, y, θ

 OQ

Example 1: Small-Size League or HSR in RoboCanes Lab

- State: position x, y, θ and speed x', y', θ'
- z_t: x, y, θ
- u_t : Driving command sent to the robot.

Example 1: Small-Size League or HSR in RoboCanes Lab

- State: position x, y, θ and speed x', y', θ'
- z_t: x, y, θ
- u_t : Driving command sent to the robot.
- **•** Sensor model:
	- **Gaussian distribution around the robot**
	- Maybe also small probabilities at other robots

Example 1: Small-Size League or HSR in RoboCanes Lab

- State: position x, y, θ and speed x', y', θ'
- z_t: x, y, θ
- u_t : Driving command sent to the robot.
- **•** Sensor model:
	- **Gaussian distribution around the robot**
	- Maybe also small probabilities at other robots
- Prediction using X_{t-1} , u_t , odometry motion model

Example 3: Ball tracking

Example 3: Ball tracking

State, z_t , u_t , the sensor model and prediction? state: position x, y, z and velocity x', y', z'

Example 3: Ball tracking

- state: position x, y, z and velocity x', y', z'
- z_t : image x, y

Example 3: Ball tracking

- state: position x, y, z and velocity x', y', z'
- z_t : image x, y
- u_t : none

Example 3: Ball tracking

- state: position x, y, z and velocity x', y', z'
- z_t : image x, y
- u_t : none
- Sensor model: transformation from state to image, Gaussian distribution in the image

Example 3: Ball tracking

- state: position x, y, z and velocity x', y', z'
- z_t : image x, y
- u_t : none
- Sensor model: transformation from state to image, Gaussian distribution in the image
- Prediction: state transition model using physics

Bayes filter

- Previous slides have shown the principle of a Bayes filter.
- Why does this work exactly?
	- **•** Probabilities
	- Bayes rule
	- Recursive Bayesian estimation

Source for the following slides: Thrun et al., Probabilistic Robotics; http://robots.stanford.edu/probabilistic-robotics/

A ロト K 何 ト K ヨ ト K ヨ ト ニヨー Y Q (^

Discrete random variables

- \bullet X denotes a random variable.
- \bullet X can take on a countable number of values in $\{x_1, x_2, ..., x_n\}$.

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

 $P(X = x_i)$ is the probability that X takes on value x_i .

Continuous random variables

- \bullet X takes on values in the continuum.
- $p(X = x)$ (or short $p(x)$) is a probability density function.
- Example: $Pr(x \in [a, b]) = \int_a^b$ $p(x)dx$

KED KARD KED KED E YORA

Joint and Conditional Probabilities

$$
P(X = x \text{ and } Y = y) = P(x, y).
$$

If X and Y are independent then $P(x, y) = P(x)P(y)$.

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

• $P(x|y)$ is the probability of x given y.

If X and Y are independent then $P(x|y) = P(x)$.

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

Law of total probability

o Discrete case:

$$
\sum_{x} P(x) = 1
$$

\n
$$
P(x) = \sum_{y} P(x, y)
$$

\n
$$
P(x) = \sum_{y} P(x|y)P(y)
$$

Law of total probability

o Discrete case:

$$
\sum_{x} P(x) = 1
$$

$$
P(x) = \sum_{y} P(x, y)
$$

$$
P(x) = \sum_{y} P(x|y)P(y)
$$

- **Continuous case:**
	- $\int p(x)dx = 1$
	- $p(x) = \int p(x, y) dy$
	- $p(x) = \int p(x|y)p(y)dy$

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

Kロト K部ト K目ト K目ト 「目」 のQ (V)

Bayes rule

L

$$
\bullet \ \ p(x|y)p(y) = p(x,y) = p(y|x)p(x)
$$

Kロト K部ト K目ト K目ト 「目」 のQ (V)

Bayes rule

L

$$
\bullet \ \ p(x|y)p(y) = p(x,y) = p(y|x)p(x)
$$

$$
\bullet \ \ p(x|y) = \frac{p(y|x)p(x)}{p(y)}
$$

Kロト K部ト K目ト K目ト 「目」 のQ (V)

Bayes rule

ı

\n- $$
p(x|y)p(y) = p(x, y) = p(y|x)p(x)
$$
\n- $p(x|y) = \frac{p(y|x)p(x)}{p(y)}$ const *y* $p(y|x)p(x)$
\n

(ロ) (@) (혼) (혼) (혼) 2000

Bayes rule

•
$$
p(x|y)p(y) = p(x, y) = p(y|x)p(x)
$$

\n• $p(x|y) = \frac{p(y|x)p(x)}{p(y)}$ $\stackrel{const \ y}{\propto} p(y|x)p(x)$

• Bayes rule with background knowledge: $p(x|y, z) = \frac{p(y|x, z)p(x|z)}{p(y|z)}$

• What is $P(open|z)?$

イロトイ部 トイヨト イヨト 一者 $\circledcirc \circledcirc \circledcirc$

Diagnostic vs. causal reasoning

- \bullet $P(open|z)$ is diagnostic.
- \circ $P(z|open)$ is causal.
- Often the causal knowledge is much easier to obtain (the sensor models).

イロト イ団 トイミト イミト ニヨー りんぐ

Diagnostic vs. causal reasoning

- \circ $P(open|z)$ is diagnostic.
- \circ $P(z|open)$ is causal.
- Often the causal knowledge is much easier to obtain (the sensor models).
- The bayes rule allows us to use causal knowledge to get $P(open|z)$:

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

 OQ

$$
P(open|z) = \frac{P(z|open)P(open)}{P(z)}
$$

• $P(z|open) = 0.6$ $P(z|\neg open) = 0.3$

•
$$
P(open) = P(\neg open) = 0.5
$$

• $P(z|open) = 0.6$ $P(z|\neg open) = 0.3$

•
$$
P(open) = P(\neg open) = 0.5
$$

•
$$
P(open|z) = \frac{P(z|open)P(open)}{P(z)}
$$

• $P(z|open) = 0.6$ $P(z|\neg open) = 0.3$

•
$$
P(open) = P(\neg open) = 0.5
$$

•
$$
P(open|z) = \frac{P(z|open)P(open)}{P(z)}
$$

$$
P(\text{open}|z) = \frac{P(z|\text{open})P(\text{open})}{P(z|\text{open})P(\text{open}) + P(z|\neg \text{open})P(\neg \text{open})}
$$

• $P(z|open) = 0.6$ $P(z|\neg open) = 0.3$

•
$$
P(open) = P(\neg open) = 0.5
$$

•
$$
P(open|z) = \frac{P(z|open)P(open)}{P(z)}
$$

•
$$
P(open|z) = \frac{P(z|open)P(open)}{P(z|open)P(open) + P(z|\neg open)P(\neg open)}
$$

•
$$
P(open|z) = \frac{0.6 * 0.5}{0.6 * 0.5 + 0.3 * 0.5} = \frac{2}{3} \approx 0.67
$$

K ロ ▶ K (日) K (王) K (王) X [王) 9 Q (연

•
$$
P(z \mid open) = 0.6
$$
 $P(z \mid \neg open) = 0.3$

•
$$
P(open) = P(\neg open) = 0.5
$$

•
$$
P(open|z) = \frac{P(z|open)P(open)}{P(z)}
$$

•
$$
P(open|z) = \frac{P(z|open)P(open)}{P(z|open)P(open) + P(z|\neg open)P(\neg open)}
$$

•
$$
P(open|z) = \frac{0.6 * 0.5}{0.6 * 0.5 + 0.3 * 0.5} = \frac{2}{3} \approx 0.67
$$

• The measurement z raises the probability that the door is open.

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

Kロト K部 K K モト K ミト ニョー つんぐ

Actions

Actions increase uncertainty.

Actions

- Actions increase uncertainty.
- Update belief with action model (e.g. odometry, motion model): $P(x|u, x')$

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

Actions

- Actions increase uncertainty.
- Update belief with action model (e.g. odometry, motion model): $P(x|u, x')$

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

• Outcome of actions:

• Discrete:
$$
P(x|u) = \sum_{x'} P(x|u, x')P(x')
$$

Actions

- **•** Actions increase uncertainty.
- Update belief with action model (e.g. odometry, motion model): $P(x|u, x')$

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

• Outcome of actions:

• Discrete:
$$
P(x|u) = \sum_{x'} P(x|u, x')P(x')
$$

Continuous: $p(x|u) \stackrel{x'}{=} \int p(x|u, x')p(x')dx'$

Markov assumptions

Measurement z_t only depends on x_t :

 $p(z_t | x_t, ...) = p(z_t | x_t)$

Kロト K部 K K モト K ミト ニョー つんぐ

Markov assumptions

Measurement z_t only depends on x_t :

$$
p(z_t|x_t,...)=p(z_t|x_t)
$$

• State x_t only depends on x_{t-1} and u_{t-1} :

$$
p(x_t|u_{t-1},x_{t-1},...) = p(x_t|u_{t-1},x_{t-1})
$$

イロト イ母 トイミト イミト ニヨー りんぐ

Bayes filter

o Given:

- Measurements $z_1, ..., z_t$ and action data/transition measurements
	- u_1, \ldots, u_t .
- Sensor model: $p(z|x)$.
- Action model: $p(x|u, x')$.
- Prior probability of the state $p(x)$.

Wanted:

 \bullet Belief of the state: $Bel(x_t) = p(x_t|z_t, u_{t-1}, ..., u_1, z_1)$

KED KAP KED KED E YAN

$$
Bel(x_t) = p(x_t|z_t, u_{t-1}, z_{t-1}, \ldots)
$$

$$
Bel(x_t) = p(x_t|z_t, u_{t-1}, z_{t-1}, ...)
$$

Bayes
$$
= \frac{p(z_t|x_t, u_{t-1}, z_{t-1}, ...)p(x_t|u_{t-1}, z_{t-1}, ...)}{p(z_t|u_{t-1}, z_{t-1}, ...)}
$$

$$
Bel(x_t) = p(x_t|z_t, u_{t-1}, z_{t-1}, ...)
$$

\nBayes
$$
= \frac{p(z_t|x_t, u_{t-1}, z_{t-1}, ...)p(x_t|u_{t-1}, z_{t-1}, ...)}{p(z_t|u_{t-1}, z_{t-1}, ...)}
$$

\n
$$
z_t \text{ const.} = \eta p(z_t|x_t, u_{t-1}, z_{t-1}, ...)p(x_t|u_{t-1}, z_{t-1}, ...)
$$

イロト イ団 トイミト イミト 一毛 $\circledcirc \circledcirc \circledcirc$

$$
Bel(x_t) = p(x_t|z_t, u_{t-1}, z_{t-1}, ...)
$$

\nBayes
$$
= \frac{p(z_t|x_t, u_{t-1}, z_{t-1}, ...)p(x_t|u_{t-1}, z_{t-1}, ...)}{p(z_t|u_{t-1}, z_{t-1}, ...)}
$$

\n
$$
z_t \text{ const.} = \eta p(z_t|x_t, u_{t-1}, z_{t-1}, ...)p(x_t|u_{t-1}, z_{t-1}, ...)
$$

\nMarkov
$$
= \eta p(z_t|x_t)p(x_t|u_{t-1}, z_{t-1}, ...)
$$

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ │ ミ $\circledcirc \circledcirc \circledcirc$

$$
Bel(x_t) = p(x_t|z_t, u_{t-1}, z_{t-1}, ...)
$$

\nBayes
$$
= \frac{p(z_t|x_t, u_{t-1}, z_{t-1}, ...) p(x_t|u_{t-1}, z_{t-1}, ...)}{p(z_t|u_{t-1}, z_{t-1}, ...)}
$$

\n
$$
z_t \text{ const.} = \eta p(z_t|x_t, u_{t-1}, z_{t-1}, ...) p(x_t|u_{t-1}, z_{t-1}, ...)
$$

\nMarkov
$$
= \eta p(z_t|x_t) p(x_t|u_{t-1}, z_{t-1}, ...)
$$

\nTotal prob.
$$
= \eta p(z_t|x_t) \int p(x_t|x_{t-1}, u_{t-1}, z_{t-1}, ...) p(x_{t-1}|u_{t-1}, z_{t-1}, ...) dx_{t-1}
$$

$$
Bel(x_t) = p(x_t|z_t, u_{t-1}, z_{t-1}, ...)
$$
\n
$$
Bayes = \frac{p(z_t|x_t, u_{t-1}, z_{t-1}, ...) p(x_t|u_{t-1}, z_{t-1}, ...)}{p(z_t|u_{t-1}, z_{t-1}, ...)}
$$
\n
$$
z_t \text{ const.} = \eta p(z_t|x_t, u_{t-1}, z_{t-1}, ...) p(x_t|u_{t-1}, z_{t-1}, ...)
$$
\n
$$
Markov = \eta p(z_t|x_t) p(x_t|u_{t-1}, z_{t-1}, ...)
$$
\n
$$
= \eta p(z_t|x_t) \int p(x_t|x_{t-1}, u_{t-1}, z_{t-1}, ...) p(x_{t-1}|u_{t-1}, z_{t-1}, ...) dx_{t-1}
$$
\n
$$
Markov = \eta p(z_t|x_t) \int p(x_t|u_{t-1}, x_{t-1}) p(x_{t-1}|z_{t-1}, u_{t-2}...) dx_{t-1}
$$

 $\mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{B} \$ 高山 $\circledcirc \circledcirc \circledcirc$

$$
Bel(x_t) = p(x_t|z_t, u_{t-1}, z_{t-1}, ...)
$$
\n
$$
Bayes = \frac{p(z_t|x_t, u_{t-1}, z_{t-1}, ...) p(x_t|u_{t-1}, z_{t-1}, ...)}{p(z_t|u_{t-1}, z_{t-1}, ...)}
$$
\n
$$
z_t \text{ const.} = \eta p(z_t|x_t, u_{t-1}, z_{t-1}, ...) p(x_t|u_{t-1}, z_{t-1}, ...)
$$
\n
$$
Markov = \eta p(z_t|x_t) p(x_t|u_{t-1}, z_{t-1}, ...)
$$
\n
$$
Total prob. = \eta p(z_t|x_t) \int p(x_t|x_{t-1}, u_{t-1}, z_{t-1}, ...) p(x_{t-1}|u_{t-1}, z_{t-1}, ...) dx_{t-1}
$$
\n
$$
= \eta p(z_t|x_t) \int p(x_t|u_{t-1}, x_{t-1}) p(x_{t-1}|z_{t-1}, u_{t-2}...) dx_{t-1}
$$
\n
$$
= \eta p(z_t|x_t) \int p(x_t|u_{t-1}, x_{t-1}) Bel(x_{t-1})
$$

 $\mathcal{A} \subseteq \mathcal{A} \Rightarrow \mathcal{A} \subseteq \mathcal{B} \Rightarrow \mathcal{A} \subseteq \mathcal{B} \Rightarrow \mathcal{A} \subseteq \mathcal{B} \Rightarrow \mathcal{B} \subseteq \mathcal{B}$ $\circledcirc \circledcirc \circledcirc$

Kロト K部 K K モト K ミト ニョー つんぐ

Bayes filter implementations

$$
Bel(x_t) = \eta p(z_t | x_t) \int p(x_t | u_{t-1}, x_{t-1}) Bel(x_{t-1})
$$

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

Bayes filter implementations

$$
Bel(x_t) = \eta p(z_t | x_t) \int p(x_t | u_{t-1}, x_{t-1}) Bel(x_{t-1})
$$

Some methods based on this equation:

- **•** Grid-based estimator
- **Kalman filter**
- **•** Particle filter

Grid-based estimator

Can be useful e.g. for localizations using a grid-based environment map.

Kalman filter

The belief is represented by multivariate normal distributions.

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

- Very efficient.
- **Optimal for linear Gaussian systems.**

Kalman filter

The belief is represented by multivariate normal distributions.

イロト (個)トイミト (ミ)トー ミー りん(^

- Very efficient.
- **Optimal for linear Gaussian systems.**
- Most robotics systems are nonlinear.
- **.** Limited to Gaussian distributions.

Kalman filter

The belief is represented by multivariate normal distributions.

KED KAP KED KED E YAN

- Very efficient.
- **Optimal for linear Gaussian systems.**
- Most robotics systems are nonlinear.
- **.** Limited to Gaussian distributions.
- **•** Extensions of the Kalman Filter for nonlinearity:
	- Extended Kalman Filter
	- Unscented Kalman Filter

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

Particle filter

- Belief represented by samples (particles).
- State estimation for non-Gaussian, nonlinear systems.

Particle filter

- Belief represented by samples (particles).
- **•** State estimation for non-Gaussian, nonlinear systems.
- Particles have weights.
- A high probability in a given region can be represented by

A ロト K 何 ト K ヨ ト K ヨ ト ニヨー Y Q (^

- many particles.
- few particles with higher weights.

Importance sampling

 \bullet Suppose we want to approximate a target density f .

Importance sampling

 \bullet Assume we can only draw samples from a density g .

Importance sampling

 \bullet The target density f can be approximated by attaching the weight $w = f(x)/g(x)$ to each sample x.

イロト イ団ト イミト イヨト \equiv OQ

Sensor information (importance sampling)

 $Bel(x) \leftarrow \alpha p(z|x)Bel(x)$

Sensor information (importance sampling)

$$
Bel(x) \leftarrow \alpha p(z|x) Bel(x)
$$

$$
w \leftarrow \frac{\alpha p(z|x)Bel(x)}{Bel(x)} = \alpha p(z|x)
$$

 $bel(x)$

x

x

Robot motion (resampling and prediction)

```
Bel(x) \leftarrow \int p(x|u, x')Bel(x')dx'
```


 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A$ OQ

Robot motion (resampling and prediction)

```
Bel(x) \leftarrow \int p(x|u, x')Bel(x')dx'
```


Sensor information (importance sampling):

$$
Bel(x) \leftarrow \alpha p(z|x) Bel(x)
$$

$$
w \leftarrow \frac{\alpha p(z|x)Bel(x)}{Bel(x)} = \alpha p(z|x)
$$

Sensor information (importance sampling):

$$
Bel(x) \leftarrow \alpha p(z|x) Bel(x)
$$

$$
w \leftarrow \frac{\alpha p(z|x)Bel(x)}{Bel(x)} = \alpha p(z|x)
$$

 4 ロト 4 何 ト 4 ヨ ト 4 ヨ ト \equiv OQ

Robot motion (resampling and prediction):

```
Bel(x) \leftarrow \int p(x|u, x')Bel(x')dx'
```


イロト イ団ト イミト イヨト \equiv OQ

Robot motion (resampling and prediction):

```
Bel(x) \leftarrow \int p(x|u, x')Bel(x')dx'
```


Particle filter steps

- State transition/prediction: Sample new particles using $p(x|u_{t-1}, x_{t-1}).$
	- In the context of localization: Move particles according to a motion model.
- Sensor update: Set particle weights using the likelihood $p(z|x)$.
- Resampling: Draw new samples from the old particles according to their weights.

 $4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi + 4 \Box$

Particle filter algorithm

1: procedure PARTICLE_FILTER (X_{t-1}, u_t, z_t) 2: $\bar{X}_t = \emptyset, X_t = \emptyset$ 3: **for** $i = 1, ..., n$ **do** \triangleright Generate new samples 4: Sample x_t^i from $p(x_t|x_{t-1}^i, u_t)$ 5: $w_t^i = p(z_t|x_t^i)$ \triangleright Compute importance weight 6: $\bar{X}_t = \bar{X}_t + \langle x_t^i, w_t^i \rangle$ \Rightarrow Update and insert normalization factor 7: end for 8: **for** $i = 1, ..., n$ **do** \triangleright Resampling 9: draw *i* with probability $\propto w_t^i$ 10: add w_t^i to X_t 11: end for 12: end procedure

KED KARD KED KED E YORA

Resampling

Resampling

- **Binary search**, n log n
- **•** High variance

Systematic resampling

- Stochastic universal sampling
- Linear time complexity
- **o** Low variance

重。

 $\circledcirc \circledcirc \circledcirc$

 $4\ \Box\ \vdash\ \ast\ \not\exists\exists\ \vdash\ \ast\ \exists\ \$

Source: Murray, Lawrence M., Anthony Lee, and Pierre E. Jacob. "Parallel resampling in the particle filter." arXiv preprint arXiv:1301.4019 (2013).

Resampling algorithm

Summary

- Particle filters are an implementation of a recursive Bayesian filter.
- Belief is represented by a set of weighted samples.
- Samples can approximate arbitrary probability distributions.
- Works for non-Gaussian, nonlinear systems.
- Relatively easy to implement.
- Depending on the state space a large number of particles might be needed.

 $4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi + 4 \Box$

Re-sampling step: new particles are drawn with a probability proportional to the likelihood of the observation.

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

Problems

- Global localization problem (initial position).
- Robot kidnapping problem.

Problems

- **•** Global localization problem (initial position).
- Robot kidnapping problem.
- Augmented Monte Carlo Localization:
	- Inject new particles when the average weight decreases.
	- New random particles or particles based on current perception.

KED KARD KED KED E YORA

Acknowledgement

The slides for this lecture have been prepared by Andreas Seekircher.

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*