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Perception - Sensors for mobile robots

Aim

Learn about key performance characteristics for
robotic sensors, especially vision sensors

Learn about a full spectrum of sensors, e.g.
proprioceptive / exteroceptive, passive / active

Suggested Reading:

Introduction to Autonomous Mobile Robots by Roland Siegwart, Illah
Nourbakhsh, Davide Scaramuzza, The MIT Press, second edition 2011
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Perception - Cognition - Action cycle

Source: Siegwart et. al (2018): Autonomous Mobile Robots, Lecture ETH Zürich
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Example HSR
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Sensor classification

Proprioceptive: measure values internal to the robot, e.g.: motor speed,
robot arm joint angles, and battery voltage

Exteroceptive: acquire information from the robot’s environment, e.g.:
distance measurements and light intensity

Passive: measure ambient environmental energy entering the sensor

Challenge: performance heavily depends on the environment
E.g.: temperature probes and cameras

Active: emit energy into the environment and measure the reaction

Challenge: might affect the environment
E.g.: ultrasonic sensors and laser rangefinders
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Basic sensor response ratings

Dynamic range: ratio between the maximum and minimum input values
(for normal sensor operation), usually measured in decibels

Resolution: minimum difference between two values that can be detected
by a sensor

Linearity: whether the sensor’s output response depends linearly on the
input)

Bandwidth or frequency: speed at which a sensor provides readings (in
Hertz)
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In situ sensor performance

Sensitivity: ratio of output change to input change

Cross-sensitivity: sensitivity to quantities that are unrelated to the target
quantity

Error: difference between the sensor output m and the true value v

error = m − v

Accuracy: degree of conformity between the sensor’s measurement and the
true value

accurance = 1− |error |
v

Precision: reproducibility of the sensor results
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Sensor errors - challenges

Systematic errors: caused by factors that can in theory be modeled; they
are deterministic, e.g. calibration errors

Random errors: cannot be predicted with sophisticated models; they are
stochastic, e.g. spurious range-finding errors

Error analysis: dperformed via a probabilistic analysis

Common assumption: symmetric, unimodal (and often Gaussian)
distributions; convenient, but often a coarse simplification
Error propagation characterized by the error propagation law
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Ecosystem of sensors

Encoders

Heading sensors

Gyroscope

Accelerometers and IMUs

Beacons

Active ranging

Cameras
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Encoders

Encoder: an electro-mechanical device that
converts motion into a sequence of digital
pulses, which can be converted to relative or
absolute position measurements

proprioceptive sensor
can be used for robot localization

Fundamental principle of optical encoders:
use a light shining onto a photodiode through
slits in a metal or glass disc
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Heading sensors

Used to determine robot’s orientation, it can
be:

Proprioceptive, e.g., gyroscope (heading
sensor that preserves its orientation in relation
to a fixed reference frame)
Exteroceptive, e.g., compass (shows direction
relative to the geographic cardinal directions)

Fusing measurements with velocity information,
one can obtain a position estimate (via
integration) → dead reckoning

Fundamental principle of mechanical
gyroscopes: angular momentum associated
with spinning wheel keeps the axis of rotation
inertially stable
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Example Gyroscope

Source: https://youtu.be/cquvA_IpEsA?si=qTr_RIEppAkSyqc_, local video: Play Video

https://youtu.be/cquvA_IpEsA?si=qTr_RIEppAkSyqc_
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Accelerometer and IMU

Accelerometer: device that measures all
external forces acting upon it

Mechanical accelerometer: essentially, a
spring-mass-damper system

Fapplied = mẍ + cẋ + kx

with m mass of proof mass, c damping
coefficient, k spring constant; in steady state

aapplied =
kx

m

Modern accelerometers use MEMS
(cantilevered beam + proof mass); deflection
measured via capacitive or piezoelectric effects
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Inertial Measurement Unit (IMU)

Definition: device that uses gyroscopes and accelerometers to estimate the
relative position, orientation, velocity, and acceleration of a moving vehicle
with respect to an inertial frame

Drift is a fundamental problem: to cancel drift, periodic references to
external measurements are required
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Beacons

Definition: signaling devices with precisely
known positions

Early examples: stars, lighthouses

Modern examples: GPS, motion capture
systems
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Active ranging

Provide direct measurements of distance to objects in vicinity

Key elements for both localization and environment reconstruction

Main types:

Time-of-flight active ranging sensors (e.g., ultrasonic and laser rangefinder)
Geometric active ranging sensors (optical triangulation and structured light)
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Time-of-flight active ranging

Fundamental principle: time-of-flight ranging makes use of the
propagation of the speed of sound or of an electromagnetic wave

Travel distance is given by
d = ct

where d is the distance traveled, c is the speed of the wave propagation,
and t is the time of flight

Propagation speeds:

Sound: 0.3 m/ms
Light: 0.3 m/ns

Performance depends on several factors, e.g. uncertainties in determining
the exact time of arrival and interaction with the target
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Example Lidar data from Kitti 360 dataset

Source: https://www.thinkautonomous.ai/blog/lidar-datasets/

https://www.thinkautonomous.ai/blog/lidar-datasets/
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Example Lidar data from Waymo dataset

Source: https://www.thinkautonomous.ai/blog/lidar-datasets/

https://www.thinkautonomous.ai/blog/lidar-datasets/
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Geometric active ranging

Fundamental principle: use geometric properties in the measurements to
establish distance readings

The sensor projects a known light pattern (e.g., point, line, or texture); the
reflection is captured by a receiver and, together with known geometric
values, range is estimated via triangulation

Examples:

Optical triangulation (1D sensor)
Structured light (2D and 3D sensor)
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Real-Time Human Pose Recognition in Parts from Single Depth

Images

Source: https://ieeexplore.ieee.org/document/5995316

https://ieeexplore.ieee.org/document/5995316
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Other sensors

Classical, e.g. Radar (possibly using Doppler
effect to produce velocity data, or Tactile
sensors

Emerging: Artificial skin, Neuromorphic
cameras
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Computer Vision

Aim:

Learn about cameras and camera models

Readings:

Siegwart, Nourbakhsh, Scaramuzza.
Introduction to Autonomous Mobile Robots.
Section 4.2.3
D. A. Forsyth and J. Ponce [FP]. Computer
Vision: A Modern Approach (2nd Edition).
Prentice Hall, 2011. Chapter 1.
R. Hartley and A. Zisserman [HZ]. Multiple
View Geometry in Computer Vision.
Academic Press, 2002. Chapter 6.1.
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Vision

Vision: ability to interpret the surrounding environment using light in the
visible spectrum reflected by objects in the environment

Human eye: provides enormous amount of information, millions of bits per
second

Cameras (e.g., CCD, CMOS): capture light → convert to digital image →
process to get relevant information (from geometric to semantic)
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Capture an image of the world

Light is reflected by the object and scattered in all directions

If we simply add a photoreceptive surface, the captured image will be
extremely blurred
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Pinhole camera

Idea: add a barrier to block off most of the rays

Pinhole camera: a camera without a lens but with a tiny aperture, a
pinhole
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History

Very old idea (several thousands of years BC)

First clear description from Leonardo Da Vinci (1502)

Oldest known published drawing of a camera obscura by Gemma Frisius
(1544)
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Pinhole camera

Perspective projection creates inverted images

Sometimes it is convenient to consider a virtual image associated with a
plane lying in front of the pinhole

Virtual image not inverted but otherwise equivalent to the actual one
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Pinhole perspective

Since P ,O and p are collinear: Ōp = λŌP for some λ ∈ R

Also, z = f , hence
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Issues with pinhole camera

Larger aperture → greater number of light rays
that pass through the aperture → blur

Smaller aperture → fewer number of light rays
that pass through the aperture → darkness (+
diffraction)

Solution: add a lens to replace the aperture!
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Lenses

Lens: an optical element that focuses light by means of refraction
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Thin lens model

Similar triangles
y

Y
=

z

Z
Blue triangles

y

Y
=

z − f

f
=

z

f
− 1 Red triangles

Key properties (follows from Snell’s
law) :

Rays passing through O are not
refracted

Rays parallel to the optical axis are
focused on the focal point F ′

All rays passing through P are
focused by the thin lens on the
point p

⇒ 1

z
+

1

Z
=

1

f
Thin lens equation
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Thin lens model (2)

Key insights:

The equations relating the positions of P and p are exactly the
same as under pinhole perspective if one considers z as focal length
(as opposed to f ), since P and p lie on a ray passing through the center of
the lens

Points located at a distance −Z from O will be in sharp focus only when
the image plane is located at a distance z from O on the other side of the
lens that satisfies the thin lens equation

In practice, objects within some range of distances (called depth of field or
depth of focus) will be in acceptable focus

Letting Z → ∞ shows that f is the distance between the center of the lens
and the plane where distant objects focus

In reality, lenses suffer from a number of aberrations
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Perspective projection

Goal: find how world points map in the camera image

Assumption: pinhole camera model (all results also hold under thin lens
model, assuming camera is focused at ∞)

Roadmap:

Map Pc into p (image
plane)

Map p into (u,v) (pixel
coordinates)

Transform Pw into Pc
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First step

Task: Map Pc = (XC ,YC ,ZC ) into p = (x , y) (image plane)

From before
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Second step (a)

Actual origin of the camera coordinate system is usually at a corner (e.g.,
top left, bottom left)
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Second step (b)

Task: convert from image coordinates (x̃ , ỹ) to pixel coordinates (u, v)

Let kx and ky be the number of pixels per unit distance in image coordinates
in the x and y directions, respectively
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Homogeneous coordinates

Goal: represent the transformation as a linear mapping

Key idea: introduce homogeneous coordinates
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Perspective projection in homogeneous coordinates

Projection can be equivalently written in homogeneous coordinates

In homogeneous coordinates, the mapping is linear:
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Skewness

In some (rare) cases

When is γ ∕= 0?

x- and y-axis of the camera are not perpendicular (unlikely)
For example, as a result of taking an image of an image

Five parameters in total!
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