Perception – Computer Vision II – CSC398 Autonomous Robots

Ubbo Visser

Department of Computer Science University of Miami

November 14, 2024

From 3D world to 2D images

- So far we have focused on mapping 3D objects onto 2D images and on leveraging such mapping for scene reconstruction
- Next step: how to represent images and infer visual content?

Today's lecture

Aim:

- Learn fundamental tools in image processing for filtering and detecting similarities
- Learn how to detect and describe key features in images

Readings:

 Siegwart, Nourbakhsh, Scaramuzza. Introduction to Autonomous Mobile Robots. Sections 4.3 – 4.5.4.

Representations in Computer Vision

Typical CV Pipeline

Example

Example

Example

Typical CV Pipeline

Traditional CV Pipeline

Represent these cats with a cat detector!

Represent these cats with a cat detector (II)

Represent these cats with a cat detector (III)

Represent these cats with a cat detector (IV)

Represent these cats with a cat detector (V)

Summary of Traditional Components

Traditional CV Pipeline

Traditional CV Pipeline

How do you interpret what the network has learned?

[Zeiler and Fergus, 2014]

Gabor-like filters learned by layer 1

Image patches that activate each of the layer 1 filters most strongly

[Zeiler and Fergus, 2014]

Image patches that activate each of the **layer 2** neurons most strongly

[Zeiler and Fergus, 2014]

Image patches that activate each of the **layer 4** neurons most strongly

[Zeiler and Fergus, 2014]

Image patches that activate each of the **layer 5** neurons most strongly

CNNs learned the classical visual recognition pipeline!

How to represent images?

Typical image processing pipeline

- 1. Signal treatment / filtering
- 2. Feature detection (e.g., DoG)
- 3. Feature description (e.g., SIFT)
- 4. Higher-level processing

Image filtering

- Filtering: process of accepting / rejecting certain frequency components
- Starting point is to view images as functions $I:[a,b]\times[c,d]\to[0,L]$, where I(x,y) represents intensity at position (x,y)
- A color image would give rise to a vector function with 3 components

Spatial filters

A spatial filter consists of

- A neighborhood S_{xy} of pixels around the point (x, y) under examination
- ullet A predefined operation F that is performed on the image pixels within S_{xy}

Linear spatial filters

- Filters can be linear or non-linear
- We will focus on linear spatial filters

$$\underbrace{I'(x,y)}_{Filtered\ image} = F \circ I = \sum_{i=-n}^{n} \sum_{j=-m}^{m} \underbrace{F(i,j)}_{Filter\ mask} \underbrace{I(x+i,y+j)}_{Original\ image}$$

- Filter F (of size (2N+1)x(2M+1)) is usually called a mask, kernel, or window
- Dealing with boundaries: e.g., pad, crop, extend, or wrap

Filter example #1: moving average

- The moving average filter returns the average of the pixels in the mask
- Achieves a smoothing effect (removes sharp features)
- E.g., for a *normalized* 3x3 mask

$$F = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Generated with a 5x5 mask

Filter example #2: Gaussian smoothing

Gaussian function

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp(-\frac{x^2 + y^2}{2\sigma^2})$$

- To obtain the mask, sample the function about its center
- E.g., for a normalized 3x3 mask with $\sigma = 0.85$

$$G = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Convolution

Still a linear filter, defined as

$$I'(x,y) = F * I = \sum_{i=-n}^{n} \sum_{j=-m}^{m} F(i,j)I(x-i,y-j)$$

- Same as correlation, but with negative signs for the filter indices
- Correlation and convolution are identical when the filter is symmetric
- Convolution enjoys the associativity property

$$F*(G*I) = (F*G)*I$$

 Example: to smooth an image & take its derivative = create a combined filter by convolving a derivative filter with a Gaussian filter & convolving the resulting combined filter directly with the image to achieve smoothing and differentiation in one step

Separability of masks

 A mask is separable if it can be broken down into the convolution of two kernels

$$F = F_1 * F_2$$

- If a mask is separable into "smaller" masks, then it is often cheaper to apply F_1 followed by F_2 , rather than F directly
- Special case: mask representable as outer product of two vectors (equivalent to two-dimensional convolution of those two vectors)
- If mask is $M \times M$, and image has size $w \times h$, then complexity is
 - $O(M^2wh)$ with no separability
 - O(2Mwh) with separability into outer product of two vectors

Example of separable masks

Moving average

$$F = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \cdot \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

Gaussian smoothing

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp(-\frac{x^2 + y^2}{2\sigma^2})$$

$$= \frac{1}{2\pi\sigma^2} \exp(-\frac{x^2}{2\sigma^2}) \frac{1}{2\pi\sigma^2} \exp(-\frac{y^2}{2\sigma^2})$$

$$= g_{\sigma}(x) \cdot g_{\sigma}(y)$$

Differentiation

Used to detect gradients and edges in the x and y-directions of an image

Derivative of discrete function (centered difference)

$$\frac{\delta I}{\delta x} = I(x+1,y) - I(x-1,y) \qquad \begin{bmatrix} 1 \ 0 - 1 \end{bmatrix}$$

$$\frac{\delta I}{\delta y} = I(x,y+1) - I(x,y-1) \qquad F_x = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

Derivative as a convolution operation; e.g., Sobel masks:

$$S_x = egin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$
 $S_y = egin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & 2 & -1 \end{bmatrix}$ Note: masks are mirrored in convolution

$$S_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & 2 & -1 \end{bmatrix}$$

Along x direction

Along *y* direction

• Filtering can also be used to determine similarity across images (e.g., to detect correspondences)

$$SAD = \sum_{i=-n}^{n} \sum_{j=-m}^{m} [I_1(x+i,y+j) - I_2(x'+i,y''+j)]^2$$
 Squared differences

Detectors

- **Goal:** detect **local features**, i.e., image patterns that differ from immediate neighborhood in terms of intensity, color, or texture
- We will focus on
 - Edge detectors
 - Corner detectors

Use of detectors/descriptors: examples

Stereo reconstruction

Panorama stiching

Estimating homographic transformations

Object detection

Edge detectors

• **Edge:** region in an image where there is a significant change in intensity values along one direction, and negligible change along the orthogonal direction

Criteria for "good" edge detection

- Accuracy: minimize false positives and negatives
- Localization: edges must be detected as close as possible to the true edges
- Single response: detect one edge per real edge in the image

Strategy to design an edge detector

Two steps:

- **Smoothing:** smooth the image to reduce noise prior to differentiation (step 2)
- **Differentiation:** take derivatives along *x* and *y* directions to find locations with high gradients

1D case: differentiation without smoothing

1D case: differentiation with smoothing

A better implementation

Convolution theorem:

$$s'(x) = \frac{\delta}{\delta x} * (g_{\sigma}(x) * I(x)) = \underbrace{(\frac{\delta}{\delta x} * g_{\sigma}(x))}_{g'_{\sigma}(x)} * I(x)$$

Edge detection in 2D

• Find the gradient of smoothed image in both directions

$$\nabla S := \begin{bmatrix} \frac{\delta}{\delta x} * (G_{\sigma} * I) \\ \frac{\delta}{\delta y} * (G_{\sigma} * I) \end{bmatrix} = \begin{bmatrix} (\frac{\delta}{\delta x} * G_{\sigma}) * I) \\ (\frac{\delta}{\delta y} * (G_{\sigma}) * I) \end{bmatrix} = \begin{bmatrix} (G_{\sigma,x}) * I) \\ (G_{\sigma,y}) * I \end{bmatrix} := \begin{bmatrix} S_x \\ S_y \end{bmatrix}$$

- ② Compute the magnitude $|\nabla S| = \sqrt{S_x^2 + S_y^2}$ and discard pixels below a certain threshold
- **1** Non-maximum suppression: identify local maxima of $|\nabla S|$

Derivative of Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

$$\frac{\partial G_{\sigma}(x,y)}{\partial x}$$

Canny edge detector

Corner detectors

Key criteria for "good" corner detectors

- **Repeatability:** same feature can be found in multiple images despite geometric and photometric transformations
- **Distinctiveness:** information carried by the patch surrounding the feature should be as distinctive as possible

Repeatability

Without repeatability, matching is impossible

Distinctiveness

Without distinctiveness, it is not possible to establish reliable correspondences; distinctiveness is key for having a useful descriptor

Corner detectors

Key criteria for "good" corner detectors

- Corner: intersection of two or more edges
- Geometric intuition for corner detection: explore how intensity changes as we shift a window

Flat: no changes in any direction

Edge: no change along the edge direction

Corner: changes in all directions

Harris detector: example

Properties of Harris detectors

- Widely used
- Detection is invariant to
 - ullet Rotation o geometric invariance
 - Linear intensity changes → photometric invariance
- Detection is not invariant to
 - Scale changes
 - Geometric affine changes
- Scale-invariant detection, such as
 - Harris-Laplacian
 - in SIFT (specifically, Difference of Gaussians (DoG))

Example Application of Corner Detector

Difference of Gaussians (DoG)

 Features are detected as local extrema in scale and space

Descriptors

- **Goal:** describe keypoints so that we can compare them across images or use them for object detection or matching
- Desired properties:
 - Invariance with respect to pose, scale, illumination, etc.
 - Distinctiviness

Simplest descriptor

- Naive descriptor: associate with a given keypoint an *nxm* window of pixel intensities centered at that keypoint
- Window can be normalized to make it invariant to illumination

Popular detectors / descriptors

- SIFT (Scale-Invariant Feature Transformation)
 - Invariant to rotation and scale, but computationally demanding
 - SIFT descriptor is a 128-dimensional vector!
- SURF
- FAST
- BRIEF
- ORB
- BRISK
- LIFT

A case study for learning-based Descriptors Dense Object Nets

Learning *Dense* Visual Object *Descriptors*By and For Robotic Manipulation. CORL 2018

Peter R. Florence, Lucas Manuelli, Russ Tedrake

Slides adapted from CS326 by Kevin Zakka and Sriram Somasundaram

Brief history

Why dense?

Bachrach et. al.

Dense descriptors

Dense descriptors

Network Architecture

Single object

Learned Dense Correspondences

Class consistent descriptors

RoboCanes vision pipeline, based on Yolov8 (Ultralytics)

Acknowledgements

Acknowledgement

This slide deck is based on material from the Stanford ASL and ETH Zürich

References