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From 3D world to 2D images

So far we have focused on mapping 3D objects onto 2D images and on
leveraging such mapping for scene reconstruction

Next step: how to represent images and infer visual content?
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Today’s lecture

Aim:

Learn fundamental tools in image processing for filtering and detecting
similarities
Learn how to detect and describe key features in images

Readings:

Siegwart, Nourbakhsh, Scaramuzza. Introduction to Autonomous Mobile
Robots. Sections 4.3 – 4.5.4.
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Representations in Computer Vision
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Typical CV Pipeline
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Example
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Typical CV Pipeline
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Traditional CV Pipeline
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Represent these cats with a cat detector!
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Represent these cats with a cat detector (II)
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Represent these cats with a cat detector (III)



References

Represent these cats with a cat detector (IV)
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Represent these cats with a cat detector (V)
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Summary of Traditional Components
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Traditional CV Pipeline
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Traditional CV Pipeline
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How do you interpret what the network has learned?
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Visualizing and Understanding CNNs
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Visualizing and Understanding CNNs
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Visualizing and Understanding CNNs
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Visualizing and Understanding CNNs
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Visualizing and Understanding CNNs
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How to represent images?
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Typical image processing pipeline
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Image filtering

Filtering: process of accepting / rejecting certain frequency components

Starting point is to view images as functions I : [a, b]× [c , d ] → [0, L],
where I (x , y) represents intensity at position (x , y)

A color image would give rise to a vector function with 3 components
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Spatial filters

A spatial filter consists of

A neighborhood Sxy of pixels around the point (x , y) under examination

A predefined operation F that is performed on the image pixels within Sxy
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Linear spatial filters

Filters can be linear or non-linear

We will focus on linear spatial filters

I ′(x , y)︸ ︷︷ ︸
Filtered image

= F ◦ I =
n∑

i=−n

m∑
j=−m

F (i , j)︸ ︷︷ ︸
Filter mask

I (x + i , y + j)︸ ︷︷ ︸
Original image

Filter F (of size (2N + 1)x(2M + 1)) is usually called a mask, kernel, or
window

Dealing with boundaries: e.g., pad, crop, extend, or wrap
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Filter example #1: moving average

The moving average filter returns the average of the pixels in the mask

Achieves a smoothing effect (removes sharp features)

E.g., for a normalized 3x3 mask

F =
1

9

1 1 1
1 1 1
1 1 1



Generated with a 5x5 mask
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Filter example #2: Gaussian smoothing

Gaussian function

Gσ(x , y) =
1

2πσ2
exp(−x2 + y 2

2σ2
)

To obtain the mask, sample the function about its center

E.g., for a normalized 3x3 mask with σ = 0.85

G =
1

16

1 2 1
2 4 2
1 2 1
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Convolution

Still a linear filter, defined as

I ′(x , y) = F ∗ I =
n∑

i=−n

m∑
j=−m

F (i , j)I (x − i , y − j)

Same as correlation, but with negative signs for the filter indices

Correlation and convolution are identical when the filter is symmetric

Convolution enjoys the associativity property

F ∗ (G ∗ I ) = (F ∗ G ) ∗ I

Example: to smooth an image & take its derivative = create a combined
filter by convolving a derivative filter with a Gaussian filter & convolving the
resulting combined filter directly with the image to achieve smoothing and
differentiation in one step
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Separability of masks

A mask is separable if it can be broken down into the convolution of two
kernels

F = F1 ∗ F2

If a mask is separable into “smaller” masks, then it is often cheaper to apply
F1 followed by F2, rather than F directly

Special case: mask representable as outer product of two vectors (equivalent
to two-dimensional convolution of those two vectors)

If mask is M ×M , and image has size w × h, then complexity is

O(M2wh) with no separability
O(2Mwh) with separability into outer product of two vectors
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Example of separable masks

Moving average

F =
1

9

1 1 1
1 1 1
1 1 1

 =
1

3

11
1

 · 1
3

[
1 1 1

]
Gaussian smoothing

Gσ(x , y) =
1

2πσ2
exp(−x2 + y 2

2σ2
)

=
1

2πσ2
exp(− x2

2σ2
)

1

2πσ2
exp(− y 2

2σ2
)

= gσ(x) · gσ(y)
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Differentiation

Used to detect gradients and edges in the x and y-directions of an image

Derivative of discrete function (centered difference)

δI

δx
= I (x + 1, y)− I (x − 1, y)

[
1 0− 1

]
δI

δy
= I (x , y + 1)− I (x , y − 1) Fx =

 1
0
−1


Derivative as a convolution operation; e.g., Sobel masks:

Sx =

1 0 −1
2 0 −2
1 0 −1


Along x direction

Sy =

 1 2 1
0 0 0
−1 2 −1


Along y direction

Note: masks are mirrored

in convolution
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Similarity measures

Filtering can also be used to determine similarity across images (e.g., to
detect correspondences)

SAD =
n∑

i=−n

m∑
j=−m

|I1(x + i , y + j)− I2(x
′ + i , y” + j)|

∑
absolute differences

SAD =
n∑

i=−n

m∑
j=−m

[I1(x + i , y + j)− I2(x
′ + i , y” + j)]2

∑
squared differences
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Detectors

Goal: detect local features, i.e., image patterns that differ from immediate
neighborhood in terms of intensity, color, or texture

We will focus on

Edge detectors
Corner detectors
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Use of detectors/descriptors: examples

Stereo reconstruction

Panorama stiching

Estimating homographic transformations

Object detection
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Edge detectors

Edge: region in an image where there is a significant change in intensity
values along one direction, and negligible change along the orthogonal
direction
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Criteria for “good” edge detection

Accuracy: minimize false positives and negatives

Localization: edges must be detected as close as possible to the true edges

Single response: detect one edge per real edge in the image
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Strategy to design an edge detector

Two steps:

Smoothing: smooth the image to reduce noise prior to differentiation (step
2)

Differentiation: take derivatives along x and y directions to find locations
with high gradients
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1D case: differentiation without smoothing
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1D case: differentiation with smoothing
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A better implementation

Convolution theorem:

s ′(x) =
δ

δx
∗ (gσ(x) ∗ I (x)) = (

δ

δx
∗ gσ(x))︸ ︷︷ ︸
g ′
σ(x)

∗I (x)
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Edge detection in 2D

1 Find the gradient of smoothed image in both directions

∇S :=

[
δ
δx

∗ (Gσ ∗ I )
δ
δy

∗ (Gσ ∗ I )

]
=

[
( δ
δx

∗ Gσ) ∗ I )
( δ
δy

∗ (Gσ) ∗ I )

]
=

[
(Gσ,x) ∗ I )
(Gσ,y ) ∗ I )

]
:=

[
Sx

Sy

]
2 Compute the magnitude |∇S | =

√
S2
x + S2

y and discard pixels below a
certain threshold

3 Non-maximum suppression: identify local maxima of |∇S |
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Derivative of Gaussian filter
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Canny edge detector
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Corner detectors

Key criteria for “good” corner detectors

Repeatability: same feature can be found in multiple images despite
geometric and photometric transformations

Distinctiveness: information carried by the patch surrounding the feature
should be as distinctive as possible
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Repeatability

Without repeatability, matching is impossible
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Distinctiveness

Without distinctiveness, it is not possible to establish reliable correspondences;
distinctiveness is key for having a useful descriptor
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Corner detectors

Key criteria for “good” corner detectors

Corner: intersection of two or more edges

Geometric intuition for corner detection: explore how intensity changes as
we shift a window



References

Harris detector: example
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Properties of Harris detectors

Widely used

Detection is invariant to

Rotation → geometric invariance
Linear intensity changes → photometric
invariance

Detection is not invariant to

Scale changes
Geometric affine changes

Scale-invariant detection, such as
1 Harris-Laplacian
2 in SIFT (specifically, Difference of

Gaussians (DoG))
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Example Application of Corner Detector
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Difference of Gaussians (DoG)

Features are detected as local
extrema in scale and space
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Descriptors

Goal: describe keypoints so that we can compare them across images or use
them for object detection or matching

Desired properties:

Invariance with respect to pose, scale, illumination, etc.
Distinctiviness
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Simplest descriptor

Naive descriptor: associate with a given keypoint an nxm window of pixel
intensities centered at that keypoint

Window can be normalized to make it invariant to illumination
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Popular detectors / descriptors

SIFT (Scale-Invariant Feature Transformation)

Invariant to rotation and scale, but computationally demanding
SIFT descriptor is a 128-dimensional vector!

SURF

FAST

BRIEF

ORB

BRISK

LIFT
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Case study
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Case study

Brief history
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Case study

Why dense?
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Case study

Dense descriptors
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Case study

Dense descriptors
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Case study

Network Architecture
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Case study

Single object



References

Case study

Learned Dense Correspondences
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Case study

Class consistent descriptors
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RoboCanes vision pipeline, based on Yolov8 (Ultralytics)

Collection of 
imagesObject images ReviewData

Cropped and 
cleaned 
objects

Augmentation/
Datageneration

Prepared files 
for CNN Yolov8 Object 

detection
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