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Perception - Sensors for m
Aim

o Learn how to extract information from sensor
measurements
Suggested Reading:

o Introduction to Autonomous Mobile Robots by Roland Siegwart, lllah
Nourbakhsh, Davide Scaramuzza, The MIT Press, Sections: 4.1.3, 4.6.1 -
465, 47.1-47.4
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Object recognition

world

o Object recognition: capability of naming discrete objects in the

o Why is it hard? Many reasons, including:

o Real world is made of a jumble of objects, which all occlude one another and
appear in different poses
o There is a lot of variability intrinsic within each class (e.g., dogs)
o We will look at three methods:
o Template matching

o Bag of visual words

o Neural network methods
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Information extraction

o Next step is to extract information from images, such as

o Geometric primitives (e.g., lines and circles): useful, for example, for robot
localization and mapping

o Object recognition and scene understanding: useful, for example, for
localization within a topological map and for high-level reasoning
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Information extraction

o Geometric feature extraction: extract geometric primitives from sensor
data (e.g., range data)

@ Examples: lines, circles, corners, planes, etc.

@ We focus on line extraction from range data (a quite common task); other
geometric feature extraction tasks are conceptually analogous

@ The two main problems of line extraction from range data
o Which points belong to which line? — segmentation

o Given an association of points to a line, how do we estimate line
parameters? — fitting
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Step #2: line fitting

o Goal: fit a line to a set of sensor measurements
o It is useful to work in polar coordinates:
x = pcosf, y=sinb

o Equation of a line in polar coordinates

1
P =(p,0)

o Let P = (p,0) be an arbitrary point on the P
line P
e Since P, Py, O determine a right triangle r i
pcos(f —a)=r| or xcosa-+ysina=r s o 0

1 o

o (r,a) are the parameters of the line
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Step #2: Line Fitting

@ Due to measurement errors, the equation of the
line is only approximately satisfied:

picos(0; — a) = r + d;

<—Error
@ Assume n measurement points represented in
polar coordinates as (p;, ;).

o Objective: Identify the line that best “fits” all
the measurement points.

y

P, = (Pz’,@i)
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Step #2: Line Fitting

@ Assume that all measurements have equal uncertainty.

o Find line parameters r, o that minimize the squared error:

S(r,a) = Z d? = Z(p; cos(f; — ) — r)?
i=1
o Unweighted least squares

i=1
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Step #2: Line Fitting

@ Consider, now, the case where each measurement has its own, unique
uncertainty

o For example, assume that the variance for each range measurement p; is o;
o Associate with each measurement a weight, e.g., w; = 1/0?
@ Minimize

n

S(r,a) = Z w;d? = Z w;(p;j cos(f; — ) — r)?
i=1

i=1

o Weighted least squares
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Step #2: Line Fitting

@ Assume that the n measurements are independent.
@ Solution:

- ( D2 wipisin20; — <257, 37 wiw;pip; cos 0 sin 0
o = - atan
2

s
+ —
> wip?cos20; — ﬁ >i >0 wiw;pip;j cos(6; + OJ-)>
L > wipicos(f — a)

diwi

2
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Step #1: Line Segmentation

@ Several algorithms are available
@ Here: three popular algorithms:
o Split-and-merge

o RANSAC

o Hough-Transform

g o0
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Split-and-Merge Algorithm

10:
11:
12:
13:
14:

Most popular line extraction algorithm

Data: Set S consisting of all N points, a distance threshold
d>0

Output: L, a list of sets of points each resembling a line
L+ (S)i+1
while i < len(L) do ®
Fit a line (r,a) to the set L; [
Detect the point P € L; with the maximum distance D to
the line (r, )
if D < d then L d
i+—i+1
else [
Split L; at P into S; and S
L + 51; L;+1 < 52 o
end if
end while
Merge collinear sets in L
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Split-and-Merge Algorithm

10:
11:
12:
13:
14:

Most popular line extraction algorithm

Data: Set S consisting of all N points, a distance threshold
d>0
Output: L, a list of sets of points each resembling a line
L+ (S)i+1
while / <len(L) do
Fit a line (r, ) to the set L;
Detect the point P € L; with the maximum distance D to
the line (r, )
if D < d then
i+—i+1
else
Split L; at P into S; and S
Li < 51; Lit1 <+ S
end if
end while
Merge collinear sets in L
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Split-and-Merge Algorithm

10:
11:
12:
13:
14:

Most popular line extraction algorithm

Data: Set S consisting of all N points, a distance threshold
d>0
Output: L, a list of sets of points each resembling a line
L+ (S)i+1
while / <len(L) do
Fit a line (r, ) to the set L;
Detect the point P € L; with the maximum distance D to
the line (r, )
if D < d then
i+—i+1
else
Split L; at P into S; and S
Li < 51; Lit1 <+ S
end if
end while
Merge collinear sets in L
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Split-and-Merge Algorithm

10:
11:
12:
13:
14:

Most popular line extraction algorithm

Data: Set S consisting of all N points, a distance threshold
d>0
Output: L, a list of sets of points each resembling a line
L+ (S)i+1
while / <len(L) do
Fit a line (r, ) to the set L;
Detect the point P € L; with the maximum distance D to
the line (r, )
if D < d then
i+—i+1
else
Split L; at P into S; and S
Li < 51; Lit1 <+ S
end if
end while
Merge collinear sets in L
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Split-and-Merge Algorithm

Most popular line extraction algorithm

Data: Set S consisting of all N points, a distance threshold
d>0
Output: L, a list of sets of points each resembling a line
L+ (S)i+1
while / <len(L) do

Fit a line (r, ) to the set L;

Detect the point P € L; with the maximum distance D to
the line (r, )

if D < d then

i+—i+1
else

Split L; at P into S; and S
Li < 51; Lit1 <+ S
end if
: end while

. Merge collinear sets in L
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Split-and-merge: iterative-en

Iterative-end-point-fit: split-and-merge where the line is constructed by simply
connecting the first and last points (as opposed to least squares fit)

()
/
/
/

Split

Merge

No more splits

Credit: SNS
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RANSAC

@ RANSAC: Random Sample Consensus

@ General method to estimate parameters of a model from a set of observed
data in the presence of outliers, where outliers should not influence the
estimates of the values

o Typical applications in robotics: line extraction from 2D range data, plane
extraction from 3D point clouds, feature matching for structure from
motion, etc.

o RANSAC is iterative and non-deterministic: the probability of finding a
set free of outliers increases as more iterations are used
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RANSAC

1: Data: Set S consisting of all N points
2: Qutput: Set with the maximum number of inliers
(and corresponding fitting line)
3: for i=1to k do
4. Randomly select two points from S w
5: Fit line /; through the two selected points TR ‘.-". -
6: Compute the distance of all other points to line /; e
7: Construct the inlier set by counting the number .
of points with distance to the line less than ~ .
8: Store line /; and associated set of inliers Lt
9: end for -

10: Choose the set with the maximum number of inliers
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RANSAC

N =

Noasw

b

Data: Set S consisting of all N points
Output: Set with the maximum number of inliers
(and corresponding fitting line)
for i=1to k do
Randomly select two points from S
Fit line /; through the two selected points

Compute the distance of all other points to line /;

Construct the inlier set by counting the number
of points with distance to the line less than ~
Store line /; and associated set of inliers
end for

: Choose the set with the maximum number of inliers
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RANSAC

1: Data: Set S consisting of all N points
2: Qutput: Set with the maximum number of inliers
(and corresponding fitting line)
3: for i=1to k do
4. Randomly select two points from S
5: Fit line /; through the two selected points
6: Compute the distance of all other points to line /;
7: Construct the inlier set by counting the number
of points with distance to the line less than ~
8: Store line /; and associated set of inliers Lt
9: end for .

10: Choose the set with the maximum number of inliers
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RANSAC

N =

Noasw

b

Data: Set S consisting of all N points
Output: Set with the maximum number of inliers
(and corresponding fitting line)
for i=1to k do
Randomly select two points from S
Fit line /; through the two selected points

Compute the distance of all other points to line /;

Construct the inlier set by counting the number
of points with distance to the line less than ~
Store line /; and associated set of inliers
end for

: Choose the set with the maximum number of inliers
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RANSAC

1: Data: Set S consisting of all N points
2: Qutput: Set with the maximum number of inliers
(and corresponding fitting line)
3: for i=1to k do
4. Randomly select two points from S
5: Fit line /; through the two selected points
6: Compute the distance of all other points to line /;
7: Construct the inlier set by counting the number
of points with distance to the line less than ~
8: Store line /; and associated set of inliers .t
9: end for v

10: Choose the set with the maximum number of inliers
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RANSAC

1: Data: Set S consisting of all N points
2: Qutput: Set with the maximum number of inliers
(and corresponding fitting line)

3: for i=1to k do

4. Randomly select two points from S

5: Fit line /; through the two selected points -

6: Compute the distance of all other points to line /;

7: Construct the inlier set by counting the number
of points with distance to the line less than ~

8: Store line /; and associated set of inliers

9: end for

10: Choose the set with the maximum number of inliers
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RANSAC

N =

Noasw

b

Data: Set S consisting of all N points
Output: Set with the maximum number of inliers
(and corresponding fitting line)
for i=1to k do
Randomly select two points from S
Fit line /; through the two selected points

Compute the distance of all other points to line /;

Construct the inlier set by counting the number
of points with distance to the line less than ~
Store line /; and associated set of inliers
end for

: Choose the set with the maximum number of inliers
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RANSAC

1: Data: Set S consisting of all N points
2: Qutput: Set with the maximum number of inliers
(and corresponding fitting line)

3: for i=1to k do

4. Randomly select two points from S

5: Fit line /; through the two selected points

6: Compute the distance of all other points to line /;

7: Construct the inlier set by counting the number
of points with distance to the line less than ~

8: Store line /; and associated set of inliers

9: end for

10: Choose the set with the maximum number of inliers
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RANSAC iterations

@ In principle, one would need to check all possible combinations of 2 points in
dataset

e If |S| = N, number of combinations is w — too many

o However, if we have a rough estimate of the percentage of inliers, we do not
need to check all combinations...
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RANSAC iterations: statistical

o Let w be the percentage of inliers in the dataset, i.e.,

#of inliers
w =

N
o Let p be the desired probability of finding a set of points free of outliers
(typically, p = 0.99)

@ Assumption: 2 points chosen for line estimation | selected independently
o P(both points selected are inliers) = w

2
o P(at least one of the selected points is an outlier) =1 — w

2
o P(RANSAC never selects two points that are both inliers) = (1 — w?)k
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RANSAC iterations: statistical

@ Then, the minimum number of iterations k to find an outlier-free set with
probability, at least p is:

log(1 — w?)

o Thus if we know w (at least approximately), after k iterations RANSAC will
find a set free of outliers with probability p

o Note:

o k depends only on w, not on N!

o More advanced versions of RANSAC estimate w adaptively
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Hough Transform

Y
o Key idea: Each point votes for a set of plausible
line parameters.

@ A line has two parameters: (m, b).

/y: mx +b
@ Given a point (x;, ¥;), the lines that could pass

through this point are all (m, b) satisfying:

y; = mx; + b,

Y
or

b= —mx,-+y,-
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Hough Transform

Image space

(T4, i)

@ A point in image space maps into a line in Hough space

Hough parameter space

H"
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Hough Transform

o Key fact: all points on a line in image space yield lines in the parameter
space which intersects at a common point, (mx, bx)
Ya

b A

b= —mzx; + y;

(m”,0%)

b=-mx; +y,

3"
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3: local Maxima in array H(m, b) corresponds to lines
b A

bmax

12 points voted for this line
| ->local maximum
2

A\

Mmax

Hough transform algorithm
1: initialize accumulator array H(m, b) to zero
2: for each point (x;, y;), increment all cells that satisfy b = —x;m + y;
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Hough transform algorithm

Ta

. — EreoRardy: sing

@ Equation of a line in polar coordinates xcosa + ysina = r

@ The parameter space transform of a point is a sinusoidal curve

* Avoids infinite slope
* Constant resolution
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Hough Transform Algorith

—_ =

FOLXON R WN

Data: Set S consisting of N points
Output: Line fitting the points in S
Initialize n, x n, accumulator H with zeros
for (x;,y;) € S do
for « € {a1,...ap, } do
compute r = x; cos« + y; sin
Hla, r] < Hla, r] + 1;
end for
end for
Choose (a, r*) that corresponds to largest count in H;
Return line defined by (as, r«)
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Hough transform: example

Hough transform

Input image —100

Detected lines

=50

50

100

50 0

Angles (degrees)
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Hough transform: example -
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Object recognition

@ Object recognition: capability of naming discrete objects in the world
o Why is it hard? Many reasons, including:

appear in different poses

o Real world is made of a jumble of objects, which all occlude one another and

o Template matching

o There is a lot of variability intrinsic within each class (e.g., dogs)
o Here, we will look at three methods
o Bag of visual words

o Neural network methods
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Geometric feature extracti

Convolution

Fully

Fully
Connected Connected

Output Predictions

Pooling Convolution Pooling
1 L
1 1
)
[ O |
a L L)
. 1
_--7.&'D L] [

dog (0.01)

cat (0.04)
boat (0.94)
bird (0.02)
'ﬂ
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