Information extraction	Split-and-merge	RANSAC	Hough Transform	Object recognition	References ○

Perception – Information Extraction – CSC398 Autonomous Robots

Ubbo Visser

Department of Computer Science University of Miami

November 18, 2024

UNIVERSITY OF MIAMI

<ロ> < 団> < 団> < 三> < 三> < 三</p>

Hough Transform

Object recognitio

References

Perception - Sensors for mobile robots

Aim

• Learn how to extract information from sensor measurements

Suggested Reading:

 Introduction to Autonomous Mobile Robots by Roland Siegwart, Illah Nourbakhsh, Davide Scaramuzza, The MIT Press, Sections: 4.1.3, 4.6.1 -4.6.5, 4.7.1 - 4.7.4 traction Spli

Split-and-merge

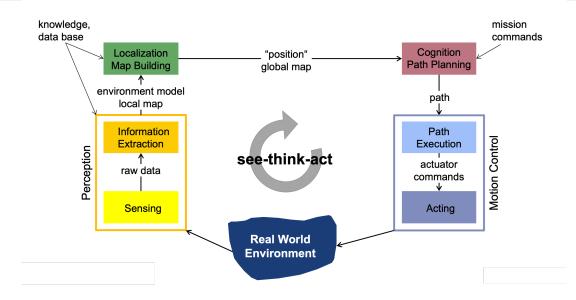
RANSAC

Hough Transform

Object recognition

References

Perception - Cognition - Action cycle



Source: Siegwart et. al (2018): Autonomous Mobile Robots, Lecture ETH Zürich

 Information
 Split-and-merge
 RANSAC
 Hough Transform
 Object recognition
 References

 Object recognition
 Object recognition</t

- Object recognition: capability of naming discrete objects in the world
- Why is it hard? Many reasons, including:
 - Real world is made of a jumble of objects, which all occlude one another and appear in different poses
 - There is a lot of variability intrinsic within each class (e.g., dogs)
- We will look at three methods:
 - Template matching
 - Bag of visual words
 - Neural network methods

RANSAC

Hough Transform

bject recognition

References

Information extraction

- Next step is to extract information from images, such as
 - Geometric primitives (e.g., lines and circles): useful, for example, for robot localization and mapping
 - Object recognition and scene understanding: useful, for example, for localization within a topological map and for high-level reasoning

RANSAC

Hough Transform

Information extraction

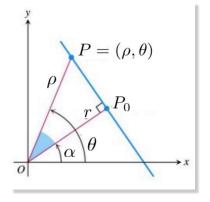
- Geometric feature extraction: extract geometric primitives from sensor data (e.g., range data)
- Examples: lines, circles, corners, planes, etc.
- We focus on line extraction from range data (a quite common task); other geometric feature extraction tasks are conceptually analogous
- The two main problems of line extraction from range data
 - Which points belong to which line? \rightarrow segmentation
 - Given an association of points to a line, how do we estimate line parameters? \rightarrow fitting

 Information extraction
 Split-and-merge
 RANSAC
 Hough Transform
 Object recognition
 References

 0000000
 Step #2: line fitting

- Goal: fit a line to a set of sensor measurements
- It is useful to work in polar coordinates: $x = p \cos \theta$, $y = \sin \theta$
- Equation of a line in polar coordinates
 - Let $P = (p, \theta)$ be an arbitrary point on the line
 - Since P, P_0, O determine a right triangle

$$p\cos(\theta - \alpha) = r$$
 or $x\cos\alpha + y\sin\alpha = r$
(1)



• (r, α) are the parameters of the line

Split-and-merg

RANSAC

Hough Transform

Dbject recognition

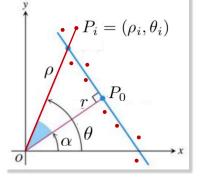
References

Step #2: Line Fitting

• Due to measurement errors, the equation of the line is only *approximately* satisfied:

$$p_i \cos(heta_i - lpha) = r + d_i \quad \longleftarrow _{\mathsf{Error}}$$

- Assume n measurement points represented in polar coordinates as (p_i, θ_i).
- Objective: Identify the line that best "fits" all the measurement points.



・ロト・西ト・山下・山下・山下・山下

 Information extraction
 Split-and-merge
 RANSAC
 Hough Transform
 Object recognition
 References

 Step #2: Line Fitting

- Assume that all measurements have equal uncertainty.
- Find line parameters r, α that minimize the squared error:

$$S(r,\alpha) := \sum_{i=1}^n d_i^2 = \sum_{i=1}^n (p_i \cos(\theta_i - \alpha) - r)^2$$

• Unweighted least squares

- Consider, now, the case where each measurement has its own, unique uncertainty
- For example, assume that the variance for each range measurement p_i is σ_i
- Associate with each measurement a weight, e.g., $w_i = 1/\sigma_i^2$
- Minimize

$$S(r,\alpha) := \sum_{i=1}^n w_i d_i^2 = \sum_{i=1}^n w_i (p_i \cos(\theta_i - \alpha) - r)^2$$

• Weighted least squares

 Information extraction
 Split-and-merge
 RANSAC
 Hough Transform
 Object recognition
 References

 Step #2: Line Fitting

- Assume that the *n* measurements are **independent**.
- Solution:

$$\alpha = \frac{1}{2} \operatorname{atan2} \left(\frac{\sum_{i} w_{i} p_{i}^{2} \sin 2\theta_{i} - \frac{2}{\sum_{i} w_{i}} \sum_{i} \sum_{j} w_{i} w_{j} p_{i} p_{j} \cos \theta_{i} \sin \theta_{j}}{\sum_{i} w_{i} p_{i}^{2} \cos 2\theta_{i} - \frac{1}{\sum_{i} w_{i}} \sum_{i} \sum_{j} w_{i} w_{j} p_{i} p_{j} \cos(\theta_{i} + \theta_{j})} \right) + \frac{\pi}{2}$$
$$r = \frac{\sum_{i} w_{i} p_{i} \cos(\theta - \alpha)}{\sum_{i} w_{i}}$$

RANSAC

Hough Transform

Object recognition

References

Step #1: Line Segmentation

- Several algorithms are available
- Here: three popular algorithms:
 - Split-and-merge
 - RANSAC
 - Hough-Transform

RANSAC

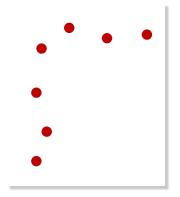
Hough Transform

Object recognition

References

Split-and-Merge Algorithm

- 1: **Data:** Set S consisting of all N points, a distance threshold d > 0
- 2: Output: L, a list of sets of points each resembling a line
- 3: $L \leftarrow (S)$; $i \leftarrow 1$
- 4: while $i \leq len(L)$ do
- 5: Fit a line (r, α) to the set L_i
- 6: Detect the point $P \in L_i$ with the maximum distance D to the line (r, α)
- 7: if D < d then
- 8: $i \leftarrow i+1$
- 9: else
- 10: Split L_i at P into S_1 and S_2
- 11: $L_i \leftarrow S_1; L_{i+1} \leftarrow S_2$
- 12: end if
- 13: end while
- 14: Merge collinear sets in L



RANSAC

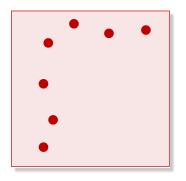
Hough Transform

bject recognition

References

Split-and-Merge Algorithm

- 1: **Data:** Set S consisting of all N points, a distance threshold d > 0
- 2: Output: L, a list of sets of points each resembling a line
- 3: $L \leftarrow (S)$; $i \leftarrow 1$
- 4: while $i \leq \text{len}(L)$ do
- 5: Fit a line (r, α) to the set L_i
- 6: Detect the point $P \in L_i$ with the maximum distance D to the line (r, α)
- 7: **if** D < d **then**
- 8: $i \leftarrow i + 1$
- 9: else
- 10: Split L_i at P into S_1 and S_2
- 11: $L_i \leftarrow S_1; L_{i+1} \leftarrow S_2$
- 12: end if
- 13: end while
- 14: Merge collinear sets in L



RANSAC

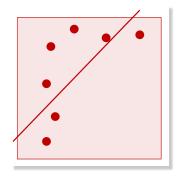
Hough Transform

bject recognition

References

Split-and-Merge Algorithm

- 1: **Data:** Set S consisting of all N points, a distance threshold d > 0
- 2: Output: L, a list of sets of points each resembling a line
- 3: $L \leftarrow (S)$; $i \leftarrow 1$
- 4: while $i \leq \text{len}(L)$ do
- 5: Fit a line (r, α) to the set L_i
- 6: Detect the point $P \in L_i$ with the maximum distance D to the line (r, α)
- 7: **if** D < d **then**
- 8: $i \leftarrow i + 1$
- 9: else
- 10: Split L_i at P into S_1 and S_2
- 11: $L_i \leftarrow S_1; L_{i+1} \leftarrow S_2$
- 12: end if
- 13: end while
- 14: Merge collinear sets in L



RANSAC

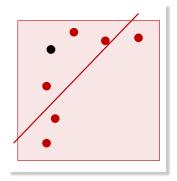
Hough Transform

bject recognition

References

Split-and-Merge Algorithm

- 1: **Data:** Set S consisting of all N points, a distance threshold d > 0
- 2: Output: L, a list of sets of points each resembling a line
- 3: $L \leftarrow (S); i \leftarrow 1$
- 4: while $i \leq \text{len}(L)$ do
- 5: Fit a line (r, α) to the set L_i
- 6: Detect the point $P \in L_i$ with the maximum distance D to the line (r, α)
- 7: if D < d then
- 8: $i \leftarrow i+1$
- 9: else
- 10: Split L_i at P into S_1 and S_2
- 11: $L_i \leftarrow S_1; L_{i+1} \leftarrow S_2$
- 12: end if
- 13: end while
- 14: Merge collinear sets in L



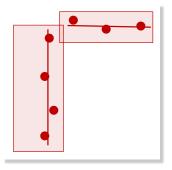
RANSAC 000000000000 Hough Transform

bject recognition

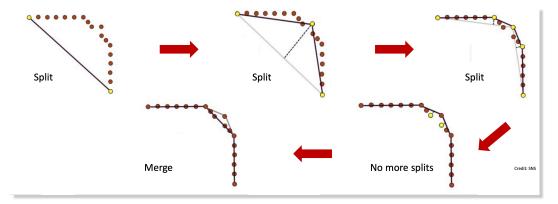
References

Split-and-Merge Algorithm

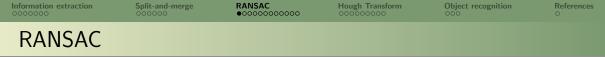
- 1: **Data:** Set S consisting of all N points, a distance threshold d > 0
- 2: Output: L, a list of sets of points each resembling a line
- 3: $L \leftarrow (S)$; $i \leftarrow 1$
- 4: while $i \leq \text{len}(L)$ do
- 5: Fit a line (r, α) to the set L_i
- 6: Detect the point $P \in L_i$ with the maximum distance D to the line (r, α)
- 7: **if** D < d **then**
- 8: $i \leftarrow i + 1$
- 9: else
- 10: Split L_i at P into S_1 and S_2
- 11: $L_i \leftarrow S_1; L_{i+1} \leftarrow S_2$
- 12: end if
- 13: end while
- 14: Merge collinear sets in L



Iterative-end-point-fit: split-and-merge where the line is constructed by simply connecting the first and last points (as opposed to least squares fit)



<ロト < 団 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



• RANSAC: Random Sample Consensus

- General method to estimate parameters of a model from a set of observed data in the presence of outliers, where outliers should not influence the estimates of the values
- Typical applications in robotics: line extraction from 2D range data, plane extraction from 3D point clouds, feature matching for structure from motion, etc.
- RANSAC is **iterative** and **non-deterministic**: the probability of finding a set free of outliers increases as more iterations are used

Split-and-merg

RANSAC

Hough Transform

Object recognition

References

- 1: Data: Set S consisting of all N points
- 2: **Output:** Set with the maximum number of inliers (and corresponding fitting line)
- 3: for i = 1 to k do
- 4: Randomly select two points from S
- 5: Fit line I_i through the two selected points
- 6: Compute the distance of all other points to line I_i
- 7: Construct the *inlier set* by counting the number of points with distance to the line less than γ
- 8: Store line l_i and associated set of inliers
- 9: end for
- 10: Choose the set with the maximum number of inliers

Split-and-merg

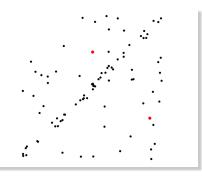
RANSAC

Hough Transform

Object recognition

References

- 1: Data: Set S consisting of all N points
- 2: **Output:** Set with the maximum number of inliers (and corresponding fitting line)
- 3: for i = 1 to k do
- 4: Randomly select two points from S
- 5: Fit line I_i through the two selected points
- 6: Compute the distance of all other points to line I_i
- 7: Construct the *inlier set* by counting the number of points with distance to the line less than γ
- 8: Store line l_i and associated set of inliers
- 9: end for
- 10: Choose the set with the maximum number of inliers



Split-and-merg

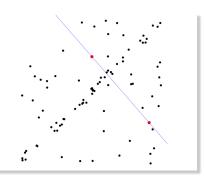
RANSAC

Hough Transform

Object recognition

References

- 1: Data: Set S consisting of all N points
- 2: **Output:** Set with the maximum number of inliers (and corresponding fitting line)
- 3: for i = 1 to k do
- 4: Randomly select two points from S
- 5: Fit line I_i through the two selected points
- 6: Compute the distance of all other points to line I_i
- 7: Construct the *inlier set* by counting the number of points with distance to the line less than γ
- 8: Store line l_i and associated set of inliers
- 9: end for
- 10: Choose the set with the maximum number of inliers



Split-and-merg

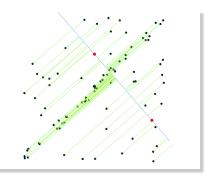
RANSAC

Hough Transform

Object recognition

References

- 1: Data: Set S consisting of all N points
- 2: **Output:** Set with the maximum number of inliers (and corresponding fitting line)
- 3: for i = 1 to k do
- 4: Randomly select two points from S
- 5: Fit line I_i through the two selected points
- 6: Compute the distance of all other points to line I_i
- 7: Construct the *inlier set* by counting the number of points with distance to the line less than γ
- 8: Store line l_i and associated set of inliers
- 9: end for
- 10: Choose the set with the maximum number of inliers



Split-and-merg

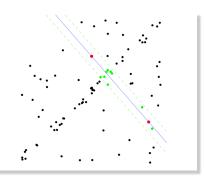
RANSAC

Hough Transform

Object recognition

References

- 1: Data: Set S consisting of all N points
- 2: **Output:** Set with the maximum number of inliers (and corresponding fitting line)
- 3: for i = 1 to k do
- 4: Randomly select two points from S
- 5: Fit line I_i through the two selected points
- 6: Compute the distance of all other points to line I_i
- 7: Construct the *inlier set* by counting the number of points with distance to the line less than γ
- 8: Store line l_i and associated set of inliers
- 9: end for
- 10: Choose the set with the maximum number of inliers



Split-and-merg

RANSAC

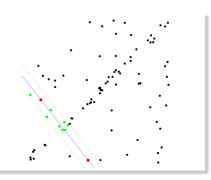
Hough Transform

Object recognition

References

RANSAC

- 1: Data: Set S consisting of all N points
- 2: **Output:** Set with the maximum number of inliers (and corresponding fitting line)
- 3: for i = 1 to k do
- 4: Randomly select two points from S
- 5: Fit line I_i through the two selected points
- 6: Compute the distance of all other points to line I_i
- 7: Construct the *inlier set* by counting the number of points with distance to the line less than γ
- 8: Store line l_i and associated set of inliers
- 9: end for
- 10: Choose the set with the maximum number of inliers



・ロト ・ 同ト ・ ヨト ・ ヨト

= nac

Split-and-merg

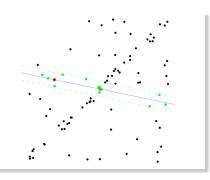
RANSAC

Hough Transform

Object recognition

References

- 1: Data: Set S consisting of all N points
- 2: **Output:** Set with the maximum number of inliers (and corresponding fitting line)
- 3: for i = 1 to k do
- 4: Randomly select two points from S
- 5: Fit line I_i through the two selected points
- 6: Compute the distance of all other points to line I_i
- 7: Construct the *inlier set* by counting the number of points with distance to the line less than γ
- 8: Store line l_i and associated set of inliers
- 9: end for
- 10: Choose the set with the maximum number of inliers



Split-and-merg

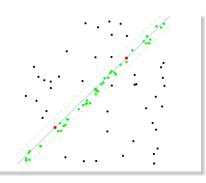
RANSAC

Hough Transform

)bject recognition

References

- 1: Data: Set S consisting of all N points
- 2: **Output:** Set with the maximum number of inliers (and corresponding fitting line)
- 3: for i = 1 to k do
- 4: Randomly select two points from S
- 5: Fit line I_i through the two selected points
- 6: Compute the distance of all other points to line I_i
- 7: Construct the *inlier set* by counting the number of points with distance to the line less than γ
- 8: Store line l_i and associated set of inliers
- 9: end for
- 10: Choose the set with the maximum number of inliers



RANSAC

Hough Transform

bject recognition

References

RANSAC iterations

- In principle, one would need to check all possible combinations of 2 points in dataset
- If |S| = N, number of combinations is $\frac{N(N-1)}{2} \rightarrow$ too many
- However, if we have a rough estimate of the percentage of inliers, we do not need to check all combinations...

• Let w be the percentage of inliers in the dataset, i.e.,

$$w = \frac{\# \text{of inliers}}{N}$$

- Let p be the desired probability of finding a set of points free of outliers (typically, p = 0.99)
- Assumption: 2 points chosen for line estimation I selected independently
 - $P(\text{both points selected are inliers}) = w^2$
 - $P(\text{at least one of the selected points is an outlier}) = 1 w^2$
 - $P(\text{RANSAC never selects two points that are both inliers}) = (1 w^2)^k$



• Then, the minimum number of iterations \bar{k} to find an outlier-free set with probability, at least p is:

$$1-p=(1-w^2)^{ar k} \Rightarrow ar k=rac{\log(1-p)}{\log(1-w^2)}$$

- Thus if we know w (at least approximately), after \bar{k} iterations RANSAC will find a set free of outliers with probability p
- Note:
 - \bar{k} depends only on w, not on N!
 - More advanced versions of RANSAC estimate w adaptively

Split-and-merg

RANSAC

Hough Transform

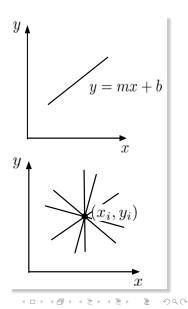
)bject recognition

References

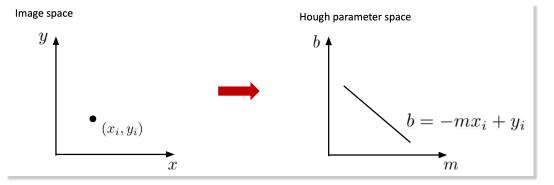
Hough Transform

- **Key idea:** Each point votes for a *set* of plausible line parameters.
- A line has two parameters: (m, b).
- Given a point (x_i, y_i) , the lines that could pass through this point are all (m, b) satisfying:

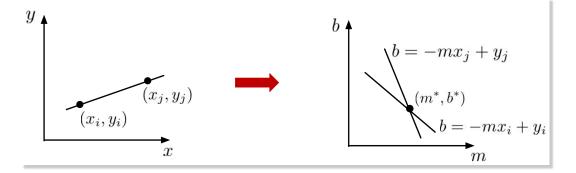
$$y_i = mx_i + b$$
, or $b = -mx_i + y_i$



• A point in image space maps into a line in Hough space



• Key fact: all points on a line in image space yield lines in the parameter space which intersects at a *common point*, (*m**, *b**)



<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

RANSAC

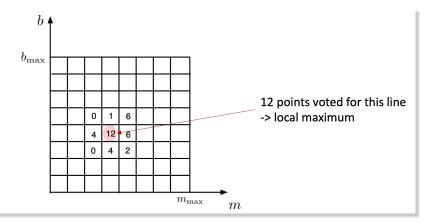
Hough Transform

Object recognition

References

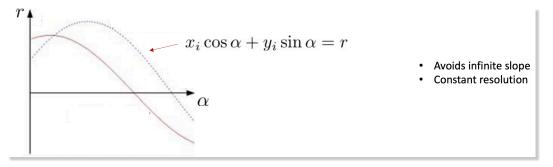
Hough transform algorithm

- 1: initialize accumulator array H(m, b) to zero
- 2: for each point (x_i, y_i) , increment all cells that satisfy $b = -x_i m + y_i$
- 3: local Maxima in array H(m, b) corresponds to lines



Hough transform algorithm: polar coordinate representation

- Equation of a line in polar coordinates $x \cos \alpha + y \sin \alpha = r$
- The parameter space transform of a point is a sinusoidal curve



Hough Transform Algorithm, Revised

- 1: Data: Set S consisting of N points
- 2: Output: Line fitting the points in S
- 3: Initialize $n_{\alpha} \times n_r$ accumulator H with zeros
- 4: for $(x_i, y_i) \in S$ do
- 5: for $\alpha \in \{\alpha_1, \dots, \alpha_{n_\alpha}\}$ do
- 6: compute $r = x_i \cos \alpha + y_i \sin \alpha$;
- 7: $H[\alpha, r] \leftarrow H[\alpha, r] + 1;$
- 8: end for
- 9: end for
- 10: Choose ($\alpha *, r*$) that corresponds to largest count in *H*;
- 11: Return line defined by $(\alpha *, r*)$

Split-and-merge

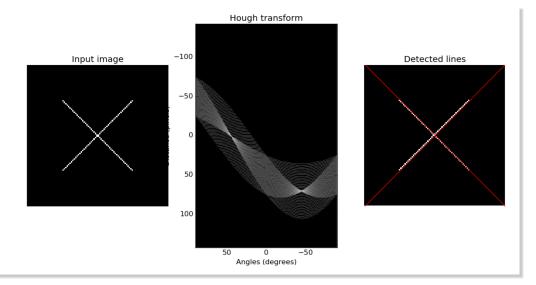
RANSAC

Hough Transform

Object recognition

References

Hough transform: example



Split-and-merge

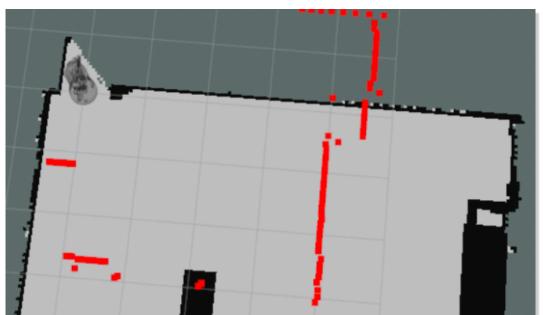
RANSAC

Hough Transform

Object recognition

References

Hough transform: example



 $\mathcal{O} \land \mathcal{O}$

Split-and-merge

RANSAC

Hough Transform

Object recognition

References

Hough transform: example

- Object recognition: capability of naming discrete objects in the world
- Why is it hard? Many reasons, including:
 - Real world is made of a jumble of objects, which all occlude one another and appear in different poses
 - There is a lot of variability intrinsic within each class (e.g., dogs)
- Here, we will look at three methods:
 - Template matching
 - Bag of visual words
 - Neural network methods

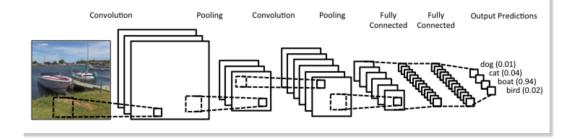
Split-and-merge

RANSAC

Hough Transform

Object recognition ○●○ References

Geometric feature extraction



Split-and-merge

RANSAC

Hough Transform

References

Acknowledgements

Acknowledgement

This slide deck is based on material from the Stanford ASL and ETH Zürich

Split-and-merge

RANSAC

Hough Transform

Object recognition

References

