EXERCISES, CHAPTER 2

Burton J. Rosenberg University of Miami January 31, 2001.

EXERCISE 2.1-1: f(n), g(n) asymptotically nonnegative. Show $\max(f, g) = \Theta(f + g)$.

Since f and g are asy. nonneg., so is f+g. For the upper bound, by the nonneg. of the functions:

$$f, g \le f + g \implies \max(f, g) \le f + g, \ \forall n > 0$$

This gives $\max(f, g) = O(f + g)$.

The lower bound is a bit trickier. The idea is that the maximum of two things can't be smaller than the average of those things:

$$1/2(f+g) \le \max(f,g) \ \forall n > 0.$$

This is show by contradiction. Suppose $1/2(f+g) > \max(f,g)$. Without loss of generality, let f be the larger, f > g for a certain n. For this n:

$$f + g > 2f \Rightarrow g > f$$

a contradiction. Therefore, we can take $n_o = 1$ and c = 2 in the definition of Ω . \triangle

EXERCISE 2.1-2: $\forall a, b \in \mathbf{R}, b > 0, (n+a)^b = \Theta(n^b).$

For the upper bound, let n > a so that n + a < 2n. Hence $(n + a)^b < (2n)^b = c_u n^b$.

For the lower bound, let n be such that n + a > (1/2)n. Solving, this means n > 2(-a). Hence $(n + a)^b > (1/2n)^b = c_l n^b$.

Since
$$(n+a)^b = O(n^b)$$
 and $(n+a)^b = \Omega(n^b)$, then $(n+a)^b = \Theta(n^b)$

EXERCISE 2.1-4: $2^{n+1} = O(2^n)$, because $2^{n+1} = 2(2^n)$. $2^{2n} \neq O(2^n)$, since we can show $2^{2n} = \omega(2^n)$:

$$\lim_{n \to \infty} 2^n / 4^n = (1/2)^n \to 0.$$

 \triangle

EXERCISE 2.1-5: $f = \Theta(g)$ if and only if f = O(g) and $f = \Omega(g)$. Suppose $f = \Theta(g)$,

$$f = \Theta(g) \Rightarrow \exists n_o, c_1, c_2 > 0 \text{ s.t. } 0 \le c_1 f \le g \le c_2 f, \forall n \ge n_o$$

Use c_1, n_o in the definition of $\Omega(g)$ and c_2, n_o in the definition of O(g).

Suppose f = O(g) and $f = \Omega(g)$.

$$f = O(g) \Rightarrow \exists n_1, c_1 > 0 \text{ s.t. } 0 \leq f \leq c_1 g, \forall n \geq n_1$$

and

$$f = \Omega(g) \Rightarrow \exists n_2, c_2 > 0 \text{ s.t. } 0 \le c_2g \le f, \forall n \ge n_2$$

For $f = \Theta(g)$, set $n_o = \max(n_1, n_2)$ and the two constants to c_1 and c_2 .

EXERCISE 2.1-6: The best-case $T_{BC}(n)$ and worst-case $T_{WC}(n)$ run times are related to the run time T(n) by:

$$T_{BC}(n) \le T(n) \le T_{WC}(n), \ \forall n > 0.$$

$$T_{BC} = \Omega(g) \implies c_{BC}g \le T_{BC}(n), \ \forall n \ge n_{BC}$$
$$T_{WC} = O(g) \implies T_{WC}(n) \le c_{WC}g, \ \forall n \ge n_{WC}$$

Let $n_o = \max(n_{BC}, n_{WC})$ and join the three inequalities.

EXERCISE 2.1-7: The set $o(g) \cap \omega(g)$ is empty. Else, the f in the intersection satisfies,

$$\lim f/g \to 0$$
 and $\lim g/f \to 0$.

 \triangle

 \triangle

EXERCISE 2.2-1: If f(n) and g(n) are monotonically increasing, so are (f+g)(n) and f(g(n)).

Suppose n > m, then by adding inequality $f(n) \ge f(m)$ with $g(n) \ge g(m)$ we have $(f+g)(n) \ge (f+g)(m)$, so f+g is mono. increasing. Also, $n > m \Rightarrow g(n) \ge g(m) \Rightarrow f(g(n)) \ge f(g(m))$.

If also $f(n), g(n) \ge 0$ for all n, multiplying inequality $f(n) \ge f(m)$ and $g(n) \ge g(m)$ gives $f(n)g(n) \ge f(m)g(m)$ for n > m. So the product of the function s in mono.increasing. \bigtriangleup

EXERCISE 2.2-2: $T(n) = n^{O(1)}$ if and only if $T(n) = O(n^k)$ for some k > 0.

$$T = n^{O(1)} \Rightarrow \exists g \in O(1) \text{ s.t. } T = n^{g(n)}.$$

But,

$$g \in O(1) \Rightarrow \exists k, n_o > 0 \text{ s.t. } g(n) \le k, \forall n \le n_o.$$

By monotonicity, $T = n^{g(n)} \le n^k$ for these n.

Conversely, since $T(n) \ge 0$ for large enough n,

$$T(n) = n^{\log_n T(n)}$$

with the special case that $n^{\log_n 0} = 0$. Since $T(n) = O(n^k)$, then,

$$\exists c, n_o > 0 \text{ s.t. } \log_n T(n) \leq k \log_n n + \log_n c, \forall n \geq n_o,$$

and it can be seen that $\log_n T(n) = O(1)$. Note that in this case it is important to interpret $T(n) = n^{O(1)}$ as exact equality $T(n) = n^{g(n)}$ for some g(n) = O(1), and this causes us extra headaches in the proof. \triangle

EXERCISE 2.2-3: For $a, b, n > 0, a^{\log_b n} = n^{\log_b a}$.

Take the log of the LHS,

$$\log_a a^{\log_b n} = \log_b n$$

and of the RHS,

$$\log_a n^{\log_b a} = \log_b a \log_a n = \log_b n$$

The strict monotonicity of the log function implies that $a^{\log_b n} = n^{\log_b a}$ as well. \triangle EXERCISE 2.2-7: Prove by induction that $F_i = (\phi^i - \hat{\phi}^i)/\sqrt{5}$ where

$$\phi, \hat{\phi} = (1 \pm \sqrt{5})/2.$$

Calculate directly the basis case for F_0 and F_1 .

For $F_i = F_{i-1} + F_{i-2}$ with i > 1, use the induction hypothesis, factor out a common power of ϕ and $\hat{\phi}$ and use the identities $\phi^2 = \phi + 1$, $\hat{\phi}^2 = \hat{\phi} + 1$:

$$F_{i} = F_{i-1} + F_{i-2}$$

= $(1/\sqrt{5})(\phi^{i-1} - \hat{\phi}^{i-1} + \phi^{i-2} - \hat{\phi}^{i-2})$
= $(1/\sqrt{5})(\phi^{i-2}(\phi+1) - \hat{\phi}^{i-2}(\hat{\phi}+1))$
= $(1/\sqrt{5})(\phi^{i} - \hat{\phi}^{i})$

	<u>۱</u>
/	١.
_	

EXERCISE 2.2-8: For $i \ge 0$, $F_{i+2} \ge \phi^i$. Calculate directly the basis case for i = 0 and i = 1.

Use induction for i > 1:

$$F_{i+2} = F_{i+1} + F_i$$

$$\geq \phi^{i-1} + \phi^{i-2}$$

$$= \phi^{i-2}(\phi+1)$$

$$= \phi^{i-2}\phi^2 = \phi^i$$

 \triangle