Exercises, Chapter 2

Burton J. Rosenberg

University of Miami
January 31, 2001.

EXERCISE 2.1-1: $f(n), g(n)$ asymptotically nonnegative. Show $\max (f, g)=\Theta(f+$ g).

Since f and g are asy. nonneg., so is $f+g$. For the upper bound, by the nonneg. of the functions:

$$
f, g \leq f+g \Rightarrow \max (f, g) \leq f+g, \forall n>0
$$

This gives $\max (f, g)=O(f+g)$.
The lower bound is a bit trickier. The idea is that the maximum of two things can't be smaller than the average of those things:

$$
1 / 2(f+g) \leq \max (f, g) \forall n>0
$$

This is show by contradiction. Suppose $1 / 2(f+g)>\max (f, g)$. Without loss of generality, let f be the larger, $f>g$ for a certain n. For this n :

$$
f+g>2 f \Rightarrow g>f
$$

a contradiction. Therefore, we can take $n_{o}=1$ and $c=2$ in the definition of $\Omega . \triangle$
EXERCISE 2.1-2: $\forall a, b \in \mathbf{R}, b>0,(n+a)^{b}=\Theta\left(n^{b}\right)$.
For the upper bound, let $n>a$ so that $n+a<2 n$. Hence $(n+a)^{b}<(2 n)^{b}=$ $c_{u} n^{b}$.

For the lower bound, let n be such that $n+a>(1 / 2) n$. Solving, this means $n>2(-a)$. Hence $(n+a)^{b}>(1 / 2 n)^{b}=c_{l} n^{b}$.

Since $(n+a)^{b}=O\left(n^{b}\right)$ and $(n+a)^{b}=\Omega\left(n^{b}\right)$, then $(n+a)^{b}=\Theta\left(n^{b}\right)$
EXERCISE 2.1-4: $2^{n+1}=O\left(2^{n}\right)$, because $2^{n+1}=2\left(2^{n}\right)$.
$2^{2 n} \neq O\left(2^{n}\right)$, since we can show $2^{2 n}=\omega\left(2^{n}\right)$:

$$
\lim _{n \rightarrow \infty} 2^{n} / 4^{n}=(1 / 2)^{n} \rightarrow 0
$$

Exercise 2.1-5: $f=\Theta(g)$ if and only if $f=O(g)$ and $f=\Omega(g)$.
Suppose $f=\Theta(g)$,

$$
f=\Theta(g) \Rightarrow \exists n_{o}, c_{1}, c_{2}>0 \text { s.t. } 0 \leq c_{1} f \leq g \leq c_{2} f, \forall n \geq n_{o}
$$

Use c_{1}, n_{o} in the definition of $\Omega(g)$ and c_{2}, n_{o} in the definition of $O(g)$.

Suppose $f=O(g)$ and $f=\Omega(g)$.

$$
f=O(g) \Rightarrow \exists n_{1}, c_{1}>0 \text { s.t. } 0 \leq f \leq c_{1} g, \forall n \geq n_{1}
$$

and

$$
f=\Omega(g) \Rightarrow \exists n_{2}, c_{2}>0 \text { s.t. } 0 \leq c_{2} g \leq f, \forall n \geq n_{2}
$$

For $f=\Theta(g)$, set $n_{o}=\max \left(n_{1}, n_{2}\right)$ and the two constants to c_{1} and c_{2}.
Exercise 2.1-6: The best-case $T_{B C}(n)$ and worst-case $T_{W C}(n)$ run times are related to the run time $T(n)$ by:

$$
\begin{gathered}
T_{B C}(n) \leq T(n) \leq T_{W C}(n), \forall n>0 . \\
T_{B C}=\Omega(g) \Rightarrow c_{B C} g \leq T_{B C}(n), \forall n \geq n_{B C} \\
T_{W C}=O(g) \Rightarrow T_{W C}(n) \leq c_{W C} g, \forall n \geq n_{W C}
\end{gathered}
$$

Let $n_{o}=\max \left(n_{B C}, n_{W C}\right)$ and join the three inequalities.
Exercise 2.1-7: The set $o(g) \cap \omega(g)$ is empty. Else, the f in the intersection satisfies,

$$
\lim f / g \rightarrow 0 \text { and } \lim g / f \rightarrow 0 .
$$

Exercise 2.2-1: If $f(n)$ and $g(n)$ are monotonically increasing, so are $(f+g)(n)$ and $f(g(n))$.

Suppose $n>m$, then by adding inequality $f(n) \geq f(m)$ with $g(n) \geq g(m)$ we have $(f+g)(n) \geq(f+g)(m)$, so $f+g$ is mono. increasing. Also, $n>m \Rightarrow g(n) \geq$ $g(m) \Rightarrow f(g(n)) \geq f(g(m))$.

If also $f(n), g(n) \geq 0$ for all n, multiplying inequality $f(n) \geq f(m)$ and $g(n) \geq$ $g(m)$ gives $f(n) g(n) \geq f(m) g(m)$ for $n>m$. So the product of the function s in mono.increasing.

Exercise 2.2-2: $T(n)=n^{O(1)}$ if and only if $T(n)=O\left(n^{k}\right)$ for some $k>0$.

$$
T=n^{O(1)} \Rightarrow \exists g \in O(1) \text { s.t. } T=n^{g(n)} .
$$

But,

$$
g \in O(1) \Rightarrow \exists k, n_{o}>0 \text { s.t. } g(n) \leq k, \forall n \leq n_{o} \text {. }
$$

By monotonicity, $T=n^{g(n)} \leq n^{k}$ for these n.
Conversely, since $T(n) \geq 0$ for large enough n,

$$
T(n)=n^{\log _{n} T(n)}
$$

with the special case that $n^{\log _{n} 0}=0$. Since $T(n)=O\left(n^{k}\right)$, then,

$$
\exists c, n_{o}>0 \text { s.t. } \log _{n} T(n) \leq k \log _{n} n+\log _{n} c, \forall n \geq n_{o}
$$

and it can be seen that $\log _{n} T(n)=O(1)$. Note that in this case it is important to interpret $T(n)=n^{O(1)}$ as exact equality $T(n)=n^{g(n)}$ for some $g(n)=O(1)$, and this causes us extra headaches in the proof.
EXERCISE 2.2-3: For $a, b, n>0, a^{\log _{b} n}=n^{\log _{b} a}$.
Take the \log of the LHS,

$$
\log _{a} a^{\log _{b} n}=\log _{b} n
$$

and of the RHS,

$$
\log _{a} n^{\log _{b} a}=\log _{b} a \log _{a} n=\log _{b} n
$$

The strict monotonicity of the \log function implies that $a^{\log _{b} n}=n^{\log _{b} a}$ as well. \triangle Exercise 2.2-7: Prove by induction that $F_{i}=\left(\phi^{i}-\widehat{\phi}^{i}\right) / \sqrt{5}$ where

$$
\phi, \widehat{\phi}=(1 \pm \sqrt{5}) / 2
$$

Calculate directly the basis case for F_{0} and F_{1}.
For $F_{i}=F_{i-1}+F_{i-2}$ with $i>1$, use the induction hypothesis, factor out a common power of ϕ and $\widehat{\phi}$ and use the identities $\phi^{2}=\phi+1, \widehat{\phi}^{2}=\widehat{\phi}+1$:

$$
\begin{aligned}
F_{i} & =F_{i-1}+F_{i-2} \\
& =(1 / \sqrt{5})\left(\phi^{i-1}-\widehat{\phi}^{i-1}+\phi^{i-2}-\widehat{\phi}^{i-2}\right) \\
& =(1 / \sqrt{5})\left(\phi^{i-2}(\phi+1)-\widehat{\phi}^{i-2}(\widehat{\phi}+1)\right) \\
& =(1 / \sqrt{5})\left(\phi^{i}-\widehat{\phi}^{i}\right)
\end{aligned}
$$

ExERCISE 2.2-8: For $i \geq 0, F_{i+2} \geq \phi^{i}$.
Calculate directly the basis case for $i=0$ and $i=1$.
Use induction for $i>1$:

$$
\begin{aligned}
F_{i+2} & =F_{i+1}+F_{i} \\
& \geq \phi^{i-1}+\phi^{i-2} \\
& =\phi^{i-2}(\phi+1) \\
& =\phi^{i-2} \phi^{2}=\phi^{i}
\end{aligned}
$$

