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Exercise 2.1-1: f(n), g(n) asymptotically nonnegative. Show max(f, g) = Θ(f +
g).

Since f and g are asy. nonneg., so is f +g. For the upper bound, by the nonneg.
of the functions:

f, g ≤ f + g ⇒ max(f, g) ≤ f + g, ∀n > 0

This gives max(f, g) = O(f + g).
The lower bound is a bit trickier. The idea is that the maximum of two things

can’t be smaller than the average of those things:

1/2(f + g) ≤ max(f, g) ∀n > 0.

This is show by contradiction. Suppose 1/2(f + g) > max(f, g). Without loss of
generality, let f be the larger, f > g for a certain n. For this n:

f + g > 2f ⇒ g > f

a contradiction. Therefore, we can take no = 1 and c = 2 in the definition of Ω. 4

Exercise 2.1-2: ∀a, b ∈ R, b > 0, (n + a)b = Θ(nb).
For the upper bound, let n > a so that n + a < 2n. Hence (n + a)b < (2n)b =

cunb.
For the lower bound, let n be such that n + a > (1/2)n. Solving, this means

n > 2(−a). Hence (n + a)b > (1/2n)b = clnb.
Since (n + a)b = O(nb) and (n + a)b = Ω(nb), then (n + a)b = Θ(nb) 4

Exercise 2.1-4: 2n+1 = O(2n), because 2n+1 = 2(2n).
22n 6= O(2n), since we can show 22n = ω(2n):

lim
n→∞

2n/4n = (1/2)n → 0.

4

Exercise 2.1-5: f = Θ(g) if and only if f = O(g) and f = Ω(g).
Suppose f = Θ(g),

f = Θ(g) ⇒ ∃no, c1, c2 > 0 s.t. 0 ≤ c1f ≤ g ≤ c2f, ∀n ≥ no,

Use c1, no in the definition of Ω(g) and c2, no in the definition of O(g).
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Suppose f = O(g) and f = Ω(g).

f = O(g) ⇒ ∃n1, c1 > 0 s.t. 0 ≤ f ≤ c1g, ∀n ≥ n1

and
f = Ω(g) ⇒ ∃n2, c2 > 0 s.t. 0 ≤ c2g ≤ f, ∀n ≥ n2

For f = Θ(g), set no = max(n1, n2) and the two constants to c1 and c2. 4

Exercise 2.1-6: The best-case TBC(n) and worst-case TWC(n) run times are
related to the run time T (n) by:

TBC(n) ≤ T (n) ≤ TWC(n), ∀n > 0.

TBC = Ω(g) ⇒ cBCg ≤ TBC(n), ∀n ≥ nBC

TWC = O(g) ⇒ TWC(n) ≤ cWCg, ∀n ≥ nWC

Let no = max(nBC , nWC) and join the three inequalities. 4

Exercise 2.1-7: The set o(g) ∩ ω(g) is empty. Else, the f in the intersection
satisfies,

lim f/g → 0 and lim g/f → 0.

4

Exercise 2.2-1: If f(n) and g(n) are monotonically increasing, so are (f + g)(n)
and f(g(n)).

Suppose n > m, then by adding inequality f(n) ≥ f(m) with g(n) ≥ g(m) we
have (f +g)(n) ≥ (f +g)(m), so f +g is mono. increasing. Also, n > m ⇒ g(n) ≥
g(m) ⇒ f(g(n)) ≥ f(g(m)).

If also f(n), g(n) ≥ 0 for all n, multiplying inequality f(n) ≥ f(m) and g(n) ≥
g(m) gives f(n)g(n) ≥ f(m)g(m) for n > m. So the product of the function s in
mono.increasing. 4

Exercise 2.2-2: T (n) = nO(1) if and only if T (n) = O(nk) for some k > 0.

T = nO(1) ⇒ ∃g ∈ O(1) s.t. T = ng(n).

But,
g ∈ O(1) ⇒ ∃ k, no > 0 s.t. g(n) ≤ k, ∀n ≤ no.

By monotonicity, T = ng(n) ≤ nk for these n.
Conversely, since T (n) ≥ 0 for large enough n,

T (n) = nlogn T (n)

with the special case that nlogn 0 = 0. Since T (n) = O(nk), then,

∃ c, no > 0 s.t. logn T (n) ≤ k logn n + logn c, ∀n ≥ no,
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and it can be seen that logn T (n) = O(1). Note that in this case it is important to
interpret T (n) = nO(1) as exact equality T (n) = ng(n) for some g(n) = O(1), and
this causes us extra headaches in the proof. 4

Exercise 2.2-3: For a, b, n > 0, alogb n = nlogb a.
Take the log of the LHS,

loga alogb n = logb n

and of the RHS,
loga nlogb a = logb a loga n = logb n

The strict monotonicity of the log function implies that alogb n = nlogb a as well. 4

Exercise 2.2-7: Prove by induction that Fi = (φi − ̂φi)/
√

5 where

φ, ̂φ = (1±
√

5)/2.

Calculate directly the basis case for F0 and F1.
For Fi = Fi−1 + Fi−2 with i > 1, use the induction hypothesis, factor out a

common power of φ and ̂φ and use the identities φ2 = φ + 1, ̂φ2 = ̂φ + 1:

Fi = Fi−1 + Fi−2

= (1/
√

5)(φi−1 − ̂φi−1 + φi−2 − ̂φi−2)

= (1/
√

5)(φi−2(φ + 1)− ̂φi−2(̂φ + 1))

= (1/
√

5)(φi − ̂φi)

4

Exercise 2.2-8: For i ≥ 0, Fi+2 ≥ φi.
Calculate directly the basis case for i = 0 and i = 1.
Use induction for i > 1:

Fi+2 = Fi+1 + Fi

≥ φi−1 + φi−2

= φi−2(φ + 1)

= φi−2φ2 = φi

4
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