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Theorem 1 For x ∈ R and a, b ∈ Z, a, b > 0,

bx/abc = bbx/ac/bc

and
dx/abe = ddx/ae/be.

Proof: To motivate the proof, consider the plane R × R with horizontal lines
drawn at y = 1, y = b and y = ab and rays drawn from the origin passing through
the integer points on y = 1, that is, (i, 1), i = 1, 2, . . .. These rays also pass through
some integer points on y = b and y = ab.

The set of all x on the line y = ab such that dx/abe = k lies inside the cone
describe by rays from the origin passing through ((k − 1)ab, ab) and (kab, ab), in-
cluding the rightmost ray but excluding the leftmost ray. The intersection of this
half open cone with the line y = b gives all x′ such that dx′/be = k.

The calculation dx/ae follows the ray from the origin passing through (x, ab)
to its intersection with the y = b line and then moving right along y = b to the
next integer point. Following the (x, ab) ray leaves us within the half-open cone,
and moving right to the next integer point does not leave the cone, since the ray
through (kab, ab) which is the righthand boundary of the cone also passes through
the integer point (kb, b).

We can follow this picture to state a formal proof:

(k − 1)ab < x ≤ kab for some k ∈ Z
(k − 1)a < x/b ≤ ka use b > 0
(k − 1)a < dx/be ≤ ka use a ∈ Z
(k − 1) < dx/be/a ≤ k use a > 0

hence ddx/be/ae = k.
We did use that a ∈ Z, and the following example shows that this is necessary.

Let a = b =
√

2 and x = 2. Do the math. However, we did not need that b ∈ Z,
hence we have a slightly stronger result.
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Theorem 2 Let a1, . . . , ad ∈ R and ad > 0. Then,

d
∑

i=0

aixi = Θ(xd).
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Proof: For x > 1,
d−1
∑

i=0

aixi ≤
d−1
∑

i=0

|ai|xi ≤ xd−1K

where we have set

K =
d−1
∑

i=0

|ai|

for notational convenience. We likewise show,

d−1
∑

i=0

aixk ≥ −xd−1K.

Hence,

adxd −Kxd−1 ≤ adxd +
d−1
∑

i=0

aixi ≤ adxd + Kxd−1,

that is,

xd(ad −K/x) ≤
d

∑

i=0

aixi ≤ xd(ad + K/x).

Taking no large enough so that K/no ≤ ad/2, for all x ≥ no,

(ad/2)xd ≤
d

∑

i=0

aixi ≤ (3ad/2)xd.

Hence
∑

aixi = Θ(xd). 4

Theorem 3 For all d, ε > 0, logd n = o(nε)

Proof: We first prove by induction the case d ∈ Z. Basis d = 1. Apply
L’Hospital’s rule to the indeterminate form,

lim
n→∞

(log n)/nε = lim
n→∞

(1/n)/(εnε−1) = ε/nε → 0.

Hence for any c > 0 there is an no such that for n ≥ no, (log n)/nε < c. That is,
log n = o(nε).
Applying L’Hospital’s to the case of the general power,

lim
n→∞

(logd n)/nε = lim
n→∞

d(logd−1 n)(1/n)/(εnε−1) = (d/ε) lim
n→∞

(logd−1 n)/nε

Hence logd n = o(nε) if logd−1 n = o(nε), which complete the induction step.
By the monotonicity in d of logd n, the result extends to all d ∈ R, d > 0. 4

Theorem 4 For all d > 0 and a > 1, nd = o(an)
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Proof: The proof pattern is the same as the previous theorem. L’Hospital’s
applied the case d = 1 gives,

lim
n→∞

n/an = lim
n→∞

1/(an log a) = 0.

Again, use L’Hospital’s to prove the induction step and then extend to all real d ≥ 1
by monotonicity. 4

Corollary 1 For all ε > 0, n log n = o(n1+ε).

Proof: This follows from a general result, if f1(n) = O(g1(n)) and f2(n) =
o(g2(n)), then f1(n)f2(n) = o(g1(n)g2(n)). Applying this by setting f1(n) = n and
f2(n) = log n.
To show the general result, let c1 and n1 be such that,

f1(n) < c1 g1(n) for all n > n1

This is possible because f1(n) = O(g1(n)). Let c > 0 be chosen, and set c2 = c/c1.
Since f2(n) = o(g2(n)), there exists an n2 such that,

f2(n) < c2 g2(n) for all n > n2.

Multiplying the equalities (both are positive) and letting no be the maximum of n1

and n2,

f1(n)f2(n) < (c1g1(n))(c2g2(n)) = c g1(n)g2(n) for all n > no.
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