Proofs for Algorithms, 1

Burton J. Rosenberg
University of Miami
Friday, January 19, 2001.

Theorem 1 For $x \in \mathbf{R}$ and $a, b \in \mathbf{Z}, a, b>0$,

$$
\lfloor x / a b\rfloor=\lfloor\lfloor x / a\rfloor / b\rfloor
$$

and

$$
\lceil x / a b\rceil=\lceil\lceil x / a\rceil / b\rceil .
$$

Proof: To motivate the proof, consider the plane $\mathbf{R} \times \mathbf{R}$ with horizontal lines drawn at $y=1, y=b$ and $y=a b$ and rays drawn from the origin passing through the integer points on $y=1$, that is, $(i, 1), i=1,2, \ldots$ These rays also pass through some integer points on $y=b$ and $y=a b$.

The set of all x on the line $y=a b$ such that $\lceil x / a b\rceil=k$ lies inside the cone describe by rays from the origin passing through $((k-1) a b, a b)$ and $(k a b, a b)$, including the rightmost ray but excluding the leftmost ray. The intersection of this half open cone with the line $y=b$ gives all x^{\prime} such that $\left\lceil x^{\prime} / b\right\rceil=k$.

The calculation $\lceil x / a\rceil$ follows the ray from the origin passing through ($x, a b$) to its intersection with the $y=b$ line and then moving right along $y=b$ to the next integer point. Following the $(x, a b)$ ray leaves us within the half-open cone, and moving right to the next integer point does not leave the cone, since the ray through $(k a b, a b)$ which is the righthand boundary of the cone also passes through the integer point $(k b, b)$.

We can follow this picture to state a formal proof:

$$
\begin{array}{llll}
(k-1) a b & <x & \leq k a b & \text { for some } k \in \mathbf{Z} \\
(k-1) a & <x / b & \leq k a & \text { use } b>0 \\
(k-1) a & <\lceil x / b\rceil & \leq k a & \text { use } a \in \mathbf{Z} \\
(k-1) & <\lceil x / b\rceil / a & \leq k & \text { use } a>0
\end{array}
$$

hence $\lceil\lceil x / b\rceil / a\rceil=k$.
We did use that $a \in \mathbf{Z}$, and the following example shows that this is necessary. Let $a=b=\sqrt{2}$ and $x=2$. Do the math. However, we did not need that $b \in \mathbf{Z}$, hence we have a slightly stronger result.

Theorem 2 Let $a_{1}, \ldots, a_{d} \in \mathbf{R}$ and $a_{d}>0$. Then,

$$
\sum_{i=0}^{d} a_{i} x^{i}=\Theta\left(x^{d}\right)
$$

Proof: For $x>1$,

$$
\sum_{i=0}^{d-1} a_{i} x^{i} \leq \sum_{i=0}^{d-1}\left|a_{i}\right| x^{i} \leq x^{d-1} K
$$

where we have set

$$
K=\sum_{i=0}^{d-1}\left|a_{i}\right|
$$

for notational convenience. We likewise show,

$$
\sum_{i=0}^{d-1} a_{i} x^{k} \geq-x^{d-1} K
$$

Hence,

$$
a_{d} x^{d}-K x^{d-1} \leq a_{d} x^{d}+\sum_{i=0}^{d-1} a_{i} x^{i} \leq a_{d} x^{d}+K x^{d-1}
$$

that is,

$$
x^{d}\left(a_{d}-K / x\right) \leq \sum_{i=0}^{d} a_{i} x^{i} \leq x^{d}\left(a_{d}+K / x\right) .
$$

Taking n_{o} large enough so that $K / n_{o} \leq a_{d} / 2$, for all $x \geq n_{o}$,

$$
\left(a_{d} / 2\right) x^{d} \leq \sum_{i=0}^{d} a_{i} x^{i} \leq\left(3 a_{d} / 2\right) x^{d}
$$

Hence $\sum a_{i} x^{i}=\Theta\left(x^{d}\right)$.
Theorem 3 For all $d, \epsilon>0, \log ^{d} n=o\left(n^{\epsilon}\right)$
Proof: We first prove by induction the case $d \in \mathbf{Z}$. Basis $d=1$. Apply L'Hospital's rule to the indeterminate form,

$$
\lim _{n \rightarrow \infty}(\log n) / n^{\epsilon}=\lim _{n \rightarrow \infty}(1 / n) /\left(\epsilon n^{\epsilon-1}\right)=\epsilon / n^{\epsilon} \rightarrow 0
$$

Hence for any $c>0$ there is an n_{o} such that for $n \geq n_{o},(\log n) / n^{\epsilon}<c$. That is, $\log n=o\left(n^{\epsilon}\right)$.
Applying L'Hospital's to the case of the general power,

$$
\lim _{n \rightarrow \infty}\left(\log ^{d} n\right) / n^{\epsilon}=\lim _{n \rightarrow \infty} d\left(\log ^{d-1} n\right)(1 / n) /\left(\epsilon n^{\epsilon-1}\right)=(d / \epsilon) \lim _{n \rightarrow \infty}\left(\log ^{d-1} n\right) / n^{\epsilon}
$$

Hence $\log ^{d} n=o\left(n^{\epsilon}\right)$ if $\log ^{d-1} n=o\left(n^{\epsilon}\right)$, which complete the induction step. By the monotonicity in d of $\log ^{d} n$, the result extends to all $d \in \mathbf{R}, d>0$.

Theorem 4 For all $d>0$ and $a>1, n^{d}=o\left(a^{n}\right)$

Proof: The proof pattern is the same as the previous theorem. L'Hospital's applied the case $d=1$ gives,

$$
\lim _{n \rightarrow \infty} n / a^{n}=\lim _{n \rightarrow \infty} 1 /\left(a^{n} \log a\right)=0
$$

Again, use L'Hospital's to prove the induction step and then extend to all real $d \geq 1$ by monotonicity.

Corollary 1 For all $\epsilon>0, n \log n=o\left(n^{1+\epsilon}\right)$.
Proof: This follows from a general result, if $f_{1}(n)=O\left(g_{1}(n)\right)$ and $f_{2}(n)=$ $o\left(g_{2}(n)\right)$, then $f_{1}(n) f_{2}(n)=o\left(g_{1}(n) g_{2}(n)\right)$. Applying this by setting $f_{1}(n)=n$ and $f_{2}(n)=\log n$.
To show the general result, let c_{1} and n_{1} be such that,

$$
f_{1}(n)<c_{1} g_{1}(n) \text { for all } n>n_{1}
$$

This is possible because $f_{1}(n)=O\left(g_{1}(n)\right)$. Let $c>0$ be chosen, and set $c_{2}=c / c_{1}$. Since $f_{2}(n)=o\left(g_{2}(n)\right)$, there exists an n_{2} such that,

$$
f_{2}(n)<c_{2} g_{2}(n) \text { for all } n>n_{2}
$$

Multiplying the equalities (both are positive) and letting n_{o} be the maximum of n_{1} and n_{2},

$$
f_{1}(n) f_{2}(n)<\left(c_{1} g_{1}(n)\right)\left(c_{2} g_{2}(n)\right)=c g_{1}(n) g_{2}(n) \text { for all } n>n_{o}
$$

