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Chapter 2 Getting Started

INSERTION-SORT(A) cost  times
1 for j = 2to A.length c n
2 key = A[J] o n—1
3 // Insert A[j] into the sorted
sequence A[l..j —1]. 0 n—1
4 i =j—1 Cq n—1
5  while/ > 0and A[i] > key cs Yot
6 Ali + 1] = Ali] 6 Yr—1)
7 i=1i-1 c7 Zfzz(tj -1
8 Ali + 1] = key Cg n—1

The running time of the algorithm is the sum of running times for each state-
ment executed: a statement that takes ¢; steps to execute and executes n times will
contribute ¢;n to the total running time.® To compute 7'(n), the running time of
INSERTION-SORT on an input of n values, we sum the products of the cost and

times columns, obtaining

T(n) = cin+cy(n—1)+caln—1)+c¢s ZZJ + ¢s Z(tj -1

j=2 j=2
ter Y (=) +esn—1).
j=2

Even for inputs of a given size, an algorithm’s running time may depend on
which input of that size is given. For example, in INSERTION-SORT, the best

case occurs if the array is already sorted. For each j = 2,3,...,n, we then find
that A[i] < key in line 5 when i has its initial value of j — 1. Thus 7; = 1 for
J =2,3,...,n,and the best-case running time is

T(n) = cn+c(n—1)+csn—1)+cs(n—1)+cg(n—1)

= (c1+ceteates+es)n—(ca+ca+ s+ cs).

We can express this running time as an + b for constants a and b that depend on
the statement costs ¢;; it is thus a linear function of n.

If the array is in reverse sorted order—that is, in decreasing order—the worst
case results. We must compare each element A[;] with each element in the entire
sorted subarray A[l..j — 1],andso #; = j for j = 2,3,...,n. Noting that

6This characteristic does not necessarily hold for a resource such as memory. A statement that
references m words of memory and is executed 7 times does not necessarily reference mn distinct

words of memory.




