
1

Netprog: RPC Overview 1

Distributed Program Design

n Communication-Oriented Design
– Design protocol first.
– Build programs that adhere to the protocol.

n Application-Oriented Design
– Build application(s).
– Divide programs up and add

communication protocols.

Typical
Typical

Sockets
Sockets

Approach

Approach

RPCRPC

Netprog: RPC Overview 2

RPC
Remote Procedure Call

n Call a procedure (subroutine) that is
running on another machine.

n Issues:
– identifying and accessing the remote

procedure
– parameters

– return value

Netprog: RPC Overview 3

blah, blah, blah

bar = foo(a,b);

blah, blah, blah

blah, blah, blah

bar = foo(a,b);

blah, blah, blah

int foo(int x, int y) {
if (x>100)

return(y-2);
else if (x>10)

return(y-x);
else

return(x+y);
}

int foo(int x, int y) {
if (x>100)

return(y-2);
else if (x>10)

return(y-x);
else

return(x+y);
}

ClientClient

ServerServer

protocol

Remote Subroutine

2

Netprog: RPC Overview 4

Sun RPC

n There are a number of popular RPC
specifications.

n Sun RPC (ONC RPC) is widely used.

n NFS (Network File System) is RPC
based.

n Rich set of support tools.

Netprog: RPC Overview 5

Sun RPC Organization

Procedure 1Procedure 1 Procedure 2Procedure 2 Procedure 3Procedure 3

Shared Global DataShared Global Data

Remote ProgramRemote Program

Netprog: RPC Overview 6

Procedure Arguments
n To reduce the complexity of the

interface specification, Sun RPC
includes support for a single argument
to a remote procedure.*

n Typically the single argument is a
structure that contains a number of
values.

* Newer versions can handle multiple args.

3

Netprog: RPC Overview 7

Procedure Identification

n Each procedure is identified by:
– Hostname (IP Address)
– Program identifier (32 bit integer)

– Procedure identifier (32 bit integer)

– Program Version identifier
» for testing and migration.

Netprog: RPC Overview 8

Program Identifiers

n Each remote program has a unique ID.

n Sun divided up the IDs:
0x00000000 - 0x1fffffff

0x20000000 - 0x3fffffff

0x40000000 - 0x5fffffff

0x60000000 - 0xffffffff

SunSun

SysAdmin SysAdmin

TransientTransient

ReservedReserved

Netprog: RPC Overview 9

Procedure Identifiers &
Program Version Numbers

n Procedure Identifiers usually start at 1
and are numbered sequentially

n Version Numbers typically start at 1 and
are numbered sequentially.

4

Netprog: RPC Overview 10

Iterative Server

n Sun RPC specifies that at most one
remote procedure within a program can
be invoked at any given time.

n If a 2nd procedure is called, the call
blocks until the 1st procedure has
completed.

Netprog: RPC Overview 11

Iterative can be good

n Having an iterative server is useful for
applications that may share data among
procedures.

n Example: database - to avoid
insert/delete/modify collisions.

n We can provide concurrency when
necessary...

Netprog: RPC Overview 12

Call Semantics

n What does it mean to call a local
procedure?
– the procedure is run exactly one time.

n What does it mean to call a remote
procedure?
– It might not mean "run exactly once"!

5

Netprog: RPC Overview 13

Remote Call Semantics

n To act like a local procedure (exactly
one invocation per call) - a reliable
transport (TCP) is necessary.

n Sun RPC does not support reliable call
semantics. !

n "At Least Once" Semantics

n "Zero or More" Semantics

Netprog: RPC Overview 14

Sun RPC Call Semantics

n At Least Once Semantics
– if we get a response (a return value)

n Zero or More Semantics
– if we don't hear back from the remote

subroutine.

Netprog: RPC Overview 15

Remote Procedure deposit()

deposit(DavesAccount,$100)

n Always remember that you don't know
how many times the remote procedure
was run!
– The net can duplicate the request (UDP).

6

Netprog: RPC Overview 16

Network Communication

n The actual network communication is
nothing new - it's just TCP/IP.

n Many RPC implementations are built
upon the sockets library.
– the RPC library does all the work!

n We are just using a different API, the
underlying stuff is the same!

Netprog: RPC Overview 17

Dynamic Port Mapping

n Servers typically do not use well known
protocol ports!

n Clients know the Program ID (and host
IP address).

n RPC includes support for looking up the
port number of a remote program.

Netprog: RPC Overview 18

Port Lookup Service

n A port lookup service runs on each host
that contains RPC servers.

n RPC servers register themselves with
this service:
– "I'm program 17 and I'm looking for

requests on port 1736"

7

Netprog: RPC Overview 19

The portmapper

n Each system which will support RPC
servers runs a port mapper server that
provides a central registry for RPC
services.

n Servers tell the port mapper what
services they offer.

Netprog: RPC Overview 20

More on the portmapper

n Clients ask a remote port mapper for
the port number corresponding to
Remote Program ID.

n The portmapper is itself an RPC server!

n The portmapper is available on a well-
known port (111).

Netprog: RPC Overview 21

Sun RPC Programming

n The RPC library is a collection of tools
for automating the creation of RPC
clients and servers.

n RPC clients are processes that call
remote procedures.

n RPC servers are processes that include
procedure(s) that can be called by
clients.

8

Netprog: RPC Overview 22

RPC Programming

n RPC library
– XDR routines
– RPC run time library

» call rpc service

» register with portmapper

» dispatch incoming request to correct procedure

– Program Generator

Netprog: RPC Overview 23

RPC Run-time Library

n High- and Low-level functions that can
be used by clients and servers.

n High-level functions provide simple
access to RPC services.

Netprog: RPC Overview 24

High-level Client Library

int callrpc(char *host,

u_long prognum,

u_long versnum,

u_long procnum,

xdrproc_t inproc,

char *in,

xdrproc_t outproc,

char *out);

9

Netprog: RPC Overview 25

High-Level Server Library

int registerrpc(

u_long prognum,

u_long versnum,

u_long procnum,

char *(*procname)()

xdrproc_t inproc,

xdrproc_t outproc);

Netprog: RPC Overview 26

High-Level Server Library
(cont.)

void svc_run();

n svc_run() is a dispatcher.

n A dispatcher waits for incoming
connections and invokes the
appropriate function to handle each
incoming request.

Netprog: RPC Overview 27

High-Level Library Limitation

n The High-Level RPC library calls
support UDP only (no TCP).

n You must use lower-level RPC library
functions to use TCP.

n The High-Level library calls do not
support any kind of authentication.

10

Netprog: RPC Overview 28

Low-level RPC Library

n Full control over all IPC options
– TCP & UDP
– Timeout values
– Asynchronous procedure calls

n Multi-tasking Servers
n Broadcasting

IPC is InterProcess Communication

Netprog: RPC Overview 29

RPCGEN

n There is a tool for automating the
creation of RPC clients and servers.

n The program rpcgen does most of the
work for you.

n The input to rpcgen is a protocol
definition in the form of a list of remote
procedures and parameter types.

Netprog: RPC Overview 30

RPCGEN

Input FileInput File

rpcgen

Client Stubs XDR filters header file Server skeleton

C Source CodeC Source Code

ProtocolProtocol
DescriptionDescription

11

Netprog: RPC Overview 31

rpcgen Output Files

> rpcgen –C foo.x

foo_clnt.c (client stubs)
foo_svc.c (server main)
foo_xdr.c (xdr filters)
foo.h (shared header file)

Netprog: RPC Overview 32

Client Creation

> gcc -o fooclient foomain.c foo_clnt.c
foo_xdr.c -lnsl

n foomain.c is the client main() (and possibly
other functions) that call rpc services via
the client stub functions in foo_clnt.c

n The client stubs use the xdr functions.

Netprog: RPC Overview 33

Server Creation

gcc -o fooserver fooservices.c foo_svc.c
foo_xdr.c –lrpcsvc -lnsl

n fooservices.c contains the definitions of the
actual remote procedures.

12

Netprog: RPC Overview 34

Example Protocol Definition
struct twonums {

int a;

int b;

};

program UIDPROG {

version UIDVERS {

int RGETUID(string<20>) = 1;

string RGETLOGIN(int) = 2;

int RADD(twonums) = 3;

} = 1;

} = 0x20000001;

