GROUPS

BURTON ROSENBERG

Definition 1 (Albert). A Group is a non-empty set G along with an operation • satisfying,
(1) closure: for all $g, h \in G$, then $g \cdot h$ is in G;
(2) associativity: for all $f, g, h \in G, f \cdot(g \cdot h)=(f \cdot g) \cdot h$;
(3) solutions to equations: for any $a, b \in G$ there exist $x, y \in G$ such that $a \cdot x=b$ and $y \cdot a=b$.

This definition is found in A. Adrian Albert's Modern Higher Algebra. There are other ways to define a group. Although all definitions are equivalent, this is my favorite definition. However, it is not the most common definition. More common is to define a group by existence of inverses and an identity element. Inverses and identity elements are nice, but the reason one wants a group is so that one can solve equations. This definition makes this clear and moves forward minimally from that simple requirement.

Because this definition is less common, I am providing this note which gives a proof of the equivalence of this definition and the more common definition.

We first show the necessary existence in a group of an identity element, which is both a "left-hand" and a "right-hand" identity, which we will call e, which for all $g \in G$ gives $e g=g e=g$.

Since we can solve equations, we can solve $e_{l} g=g e_{r}=g$ for a certain $g \in G$. For some other $g^{\prime} \in G$, write $g^{\prime}=g c=d g$, again since we can solve equations. Then,

$$
e_{l} g^{\prime}=e_{l}(g c)=\left(e_{l} g\right) c=g c=g^{\prime}
$$

and

$$
g^{\prime} e_{r}=(d g) e_{r}=d\left(g e_{r}\right)=d g=g^{\prime}
$$

so for all $g \in G$ we have $e_{l} g=g$ and $g e_{r}=g$. Putting e_{r} in for g in the first equation gives $e_{l} e_{r}=e_{r}$; putting e_{l} in for g in the second equation gives $e_{l} e_{r}=e_{l}$, so $e_{l}=e_{r}$. Calling the common element e, we have $e g=g e=g$ for all $g \in G$.

We now explore the uniqueness of this element. Given any solution to the left identity equation $e_{l} g=g$, solve $e=g x$, and write,

$$
e_{l}=e_{l} e=e_{l} g x=g x=e .
$$

Likewise, the right identity equation $g e_{r}=g$ implies $e_{r}=e$. Hence e is the only solution to $g x=x g=g$ for all and any $g \in G$.

[^0]Concerning inverses, we next show that left and right inverses are the same. That is, for every $g, e \in G$ there is a g^{\prime} such that $g g^{\prime}=e$, and for that g^{\prime}, a $g^{\prime \prime}$ such that $g^{\prime} g^{\prime \prime}=e$. Then,

$$
g g^{\prime}=e=g^{\prime} g^{\prime \prime}=\left(g^{\prime} e\right) g^{\prime \prime}=\left(g^{\prime}\left(g g^{\prime}\right)\right) g^{\prime \prime}=g^{\prime}\left(g\left(g^{\prime} g^{\prime \prime}\right)\right)=g^{\prime}(g e)=g^{\prime} g .
$$

Consider a second solution, $g g^{\prime \prime}=e$. Then,

$$
g^{\prime}=g^{\prime} e=g^{\prime}\left(g g^{\prime \prime}\right)=\left(g^{\prime} g\right) g^{\prime \prime}=\left(g g^{\prime}\right) g^{\prime \prime}=e g^{\prime \prime}=g^{\prime \prime}
$$

So the solution to $g x=e$ is unique, and is the same as the solution to $x g=e$, for all $g \in G$. This solution is the inverse of g, denoted g^{-1}. From this it follows $\left(g^{-1}\right)^{-1}=g$, since they both g and $\left(g^{-1}\right)^{-1}$ solve $g^{-1} x=e$.

Finally, considering a general equation $a x=b$, for any $a, b \in G$, it follows that $b^{-1} a x=e$, so x is unique, as it is the inverse of $b^{-1} a$. Since $x=a^{-1} b$ works, then this must be the unique solution. Likewise, the unique solution of $x a=b$ is $x=b a^{-1}$.

This gives the following theorem.
Theorem 1. For a group G,
(1) There exists a unique identity element e such that for any $g \in G, g e=e g=g$.
(2) For any $g, e^{\prime} \in G$ if either $g e^{\prime}=g$ or $e^{\prime} g=g$ then $e^{\prime}=e$.
(3) For every $g \in G$ there is a unique $g^{-1} \in G$ such that, $g g^{-1}=g^{-1} g=e$.
(4) With the above notation, $\left(g^{-1}\right)^{-1}=g$.
(5) The solution $a x=b$ is unique, and is $x=a^{-1} b$. The solution to $x a=b$ is unique, and is $x=b a^{-1}$.

For comparison, here is Serge Lang's definition for a group (see Algebra):
Definition 2 (Lang). A group is a non-empty set G along with an operation • satisfying,
(1) closure;
(2) associativity;
(3) identity element: there exists an element $e \in G$ such that for all $x \in G$, $e x=x e=$ x;
(4) inverses: for every $g \in G$ exists an $g^{-1} \in G$ such that $g g^{-1}=g^{-1} g=e$.

These axioms can in fact be weakened so that only a one-sided identity and inverse is demanded, since it follows that such an identity or inverse would be two sided (and unique).

Like I said, rather than focus on special elements, I like to think of equation solving as the heart of a group. Just as we started from equation solving and derived the existence (and uniqueness) of an identity and inverse, so can one start from the existence of (even one-sided) identity and inverse elements and derive the equation solving axioms. So the two foundations describe the same concept.

[^0]: Date: Last update 2 February 2009 / Created 23 January 2009.

