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1. Perfect Secrecy

Claude Shannon introduced an entropy model for information, and applied it to
secrecy in communications. It supposes a source of information, Alice, which chooses
among a set of possible messages. There is associated with this choice a likelihood
that Alice would chose a particular message. Symbols are then sent across a channel
to Bob. These symbols should refine Bob’s likelihood function, emphasizing the
likelihood of Alice’s chosen message. Alice and Bob share a secret key, but this
key is not shared with the eavesdropper Eve. Eve sees the symbols on the channel,
and understands as well the likelihood by which Alice chooses messages. However,
because Eve does not share the secret key, Eve should find no use for these symbols.
Her likelihood function should not be refined.

Alice’s likelihood is represented as a probability distribution over a message space.
The messages space M is assumed finite. A probability distribution P (M) is a map
from M to [0, 1], satisfying the axioms of a probability distribution; but might be
better to think of P (M) as a map from events in M , that is, subsets of M , to
[0, 1]. Events are things we can learn about the message, such as “the event that the
message contains a vowel”. Generally, for every message m, the event “the message
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is m” is an admissible event, and so there is no difference between P : M → [0, 1]
and P : Pwr(M)→ [0, 1].

Complete uncertainty on Alice’s choice corresponds to the uniform distribution:
P (M = m) = 1/|M |. In this case, Bob will have no preferred message that he can
act on in advance of any symbols. Complete certainty corresponds to,

P (M = m) =

{
1 if m = m∗

0 else

In this case, each time Alice picks a message, that message is m∗, and it is even
unnecessary that she sends symbols. Bob can act in advance on the knowledge that
when Alice chooses, she will choose m∗.

If the symbols placed on the channel are from the space C, the ciphertext, we
wish that Bob learns from this symbol. Consequently the probability is updated.
However, as Eve learns nothing, the probability on M conditioned on C should be
unchanged. This is the Shannon definition of Perfect Secrecy:

Definition 1.1. An encryption scheme as Perfect Secrecy if for every probability
distribution P (M) and for every c ∈ C, the probability distribution P (M | c) is the
same as the a priori likelihood distribution P (M).

1.1. A Perfectly Secret Cipher. The Vernam Cipher, or One Time Pad, is an
example of a perfectly secret cipher. It works on a message space of bits, and the
key is a stream of bits matching the length of the message. We discuss the case of a
one bit message.

Alice and Bob flip a fair coin (or a coin of bias β). The result k ∈ {0, 1} is their
secret key. Given the message m ∈ {0, 1}, Alice forms ciphertext c = k ⊕m. Bob
receives c and recovers m by,

c⊕ k = m⊕ k ⊕ k = m⊕ 0 = m.

Theorem 1.1. The Vernam Cipher has Prefect Secrecy if and only if β = 1/2.

Proof. Because β = 1/2, half of the 0 messages end up transmitting a 0, and half of
the 1 messages end up transmitting a 0; so half of the transmissions are 0. Leaving
that the other half of the transmissions are a 1.

P (C = 0) = P (C = 1) = 1/2

Ciphertext c obtained from message m exactly when k = c⊕m,

P (C = c |M = m) = P (k = c⊕m) = 1/2.
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Figure 1. Vernam Cipher.

Using Bayes Theorem to put these facts together,

P (M = m | C = c) = P (C = c |M = m)P (M = m)/P (C = c)

= (1/2)P (M = m)/(1/2)

= P (M = m)

satisfying the definition of Perfect Secrecy.
For the situation when β 6= 1/2, see below. �

Hence, to Eve, without access to k, the likelihood of a message after observation of
C is the same as without any observation. The channel reveals nothing because Eve’s
beliefs can ignore it entirely without loss. However, Bob can update his probability
to achieve certainty about which message was chosen by Alice.

1.2. Odds Ratio and Bias. Assume, through some fault of key generation that
the key coin is not fair, β 6= 1/2. Then the system does not have perfect secrecy. In
the case of a probability distribution that places weight 1/2 on each of two elements
in M , the ciphertext is a clear hint about the message chosen. Into the encryption
box, both a 0 or a 1 are equally likely, but out of the encryption box, it is more likely
a 0 if the input were a 0, and more likely a 1 if the input were a 1.

We calculate that P (m = c) = β, in this case. We can do this directly from the
equation k = m⊕ c.

However, what of perfect secrecy in the case were the message distribution is not
uniform. We can assume w.l.o.g. β ≥ 1/2 and δ = P (M = 0) ≥ P (M = 1). What
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should Eve do? Let’s assume that Eve chooses the most likely input to the encryption
box given the observed output. We express this as an odds ratio:

P (M = 0 | C = c)/P (M = 1 | C = c)

Intuitively, if c = 0, then it is more likely that m = 0. M = 0 is already the a priori
guess, and a biased coin only adds likelihood to this guess if c = 0.

So:

P (M = 1 | C = 1)

P (M = 0 | C = 1)
=

P (C = 1 |M = 1)P (M = 1)/P (C = 1)

P (C = 1 |M = 0)P (M = 0)/P (C = 1)

=
P (C = 1 |M = 1)

P (C = 1 |M = 0)

P (M = 1)

P (M = 0)

=
β

1− β
1− δ
δ

Eve will guess 1 if,
β

1− β
1− δ
δ

> 1,

which reduces to β > δ.
Hence Eve continues to guess the more a priori outcome and achieves success

probability δ = P (M = 0) unless the coin bias β rises about δ, in which case Eve
guesses that m is c and achieves success probability β.

1.3. Conditions for Perfect Secrecy. A few necessary conditions for perfect se-
crecy are immediate. It must be that the key space is at least the size the space of
ciphertext messages. If not, then given a ciphertext, decrypting by each key will give
the space of possible messages. Some message cannot be achieved, because there are
too many messages to be covered by the keys. An uncovered message will have a
posteri probability 0, and for the purposes of the proof, a distribution on messages
can be assumed with a priori probability non-zero for this message.

The space of ciphertext messages must be at least as large as the space of messages,
else there will be some two messages encrypting to the same ciphertext, and the
requirement that decryption be the inverse of encrypting cannot be achieve.

Shannon’s theorem for perfect secrecy assumes equal sizes for the key space, mes-
sage space, and ciphertext space and gives two conditions necessary and sufficient
for perfect secrecy.

(1) The choice if k from K is made uniformly at random; and
(2) For each m in M and c in C there is a unique k in K such that c = Ek(m).

One can check that these theorem holds for the Vernam Cipher described above.
The exclusive-or over a 0-1 space can be replaced with a randomly chosen shift

in the space of modular integers. If each shift were chosen independently, uniformly
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at random for each character in a text, then the requirements of Perfect Secrecy are
satisfied.

However, shift ciphers do not have completely random choices for keys for each
column. While the Vignere cipher improves this by having several groups of columns
which independently chosen shifts, it is not sufficient. In a simple shift cipher seeing
a ciphertext with a repeated cipher symbol reduces to zero the likelihood of the
message having differing letters in arranged where the cipher symbols are the same.

2. Adversarial Indistinguishability

Shannon introduced encryption in the context of entropy and information. The
model gives absolute answers. It does not depend on any assumptions about the
attacker. The encryption keeps the message secret because the channel symbols
support equally any hypothesis about which message is more likely, in the presence
of that symbol.

However, the price is that keys must be a large as message. This is not practical.
Computational complexity allows for the possibility of a practical scheme that is
effectively secure. A claim can be made that, although possible, it is not with
the capacity of a practical computation to extract information from the ciphertext.
This is possible because some functions are (hypothesized to be) one way: a quick
calculation can lead to a result whose inversion is (possibly) intractable.

To help introduce these notions we rephrase perfect security with an adversary,
that first will have unbounded power but then we will ask that the adversary fit
within computational bounds.

Adversarial Indistinguishability is comprised of an encryption system,

Π = (Gen,Enc,Dec),

and an Adversary A, and a game where:

(1) The adversary chooses two message, m0 and m1 from the message space.
(2) A key k is generated at random by Gen, and a fair coin chooses b ∈ {0, 1}.
(3) The adversary A is presented Enc(k,mb)
(4) The adversary returns b′.

The value of PrivKeav
A,Π is (b == b′).

Definition 2.1. An encryption scheme Π has Perfect Adversarial Indistinguishability
if, for any adversary A,

P (PrivKeav
A,Π = 1) = 1/2,

where the probability space includes the distribution of k by Gen, the coin flip b, the
choice of m0 and m1 by A, and any randomness in the functions A and Enc.
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2.1. Prefect Secrecy and Indistinguishability are Equivalent.

Theorem 2.1. An encryption scheme has Perfect Adversarial Indistinguishability if
and only if it has Perfect Secrecy.

Proof. Assume the systems does not have Perfect Adversarial Indistinguishability.
There exists an Adversary A that has an advantage. If the adversary A has any
advantage then it must have an advantage for some two message m0, m1. Fix these
as the message choice by A.

We can consider the adversary is deterministic, because there is no gain to ran-
domizing its guesses. Hence A reduces to a guess function A : C → {0, 1}. The
advantage is then expressed as,

P (A(Ek(mb)) = b) > 1/2

For any given c, and i ∈ [0, 1], define I ic as,

I ic = {k |Ek(mi) = c}

and Ic as,

Ic = I0
c ∪ I1

c

Since the overall advantage of A is a sum of advantages for each c, weighted by the
P (c), there must be some c such that A(c) = i, and i is more like the correct answer
to challenge c,

P (I ic | Ic) > P (I1−i
c | Ic)

Since P (I ic | Ic) + P (I1−i
c | Ic) = 1, then neither can be 1/2. So

P (I0
c | Ic) = P (M = m0 | C = c) 6= 1/2

yet

P (M = m0) = 1/2.

So P (M = m0 | C = c) 6= P (M = m0) and the scheme does not have Perfect Secrecy.
Assume that the scheme does not have Perfect Secrecy. An equivalent definition

for Perfect Secrecy is that ∀m0,m1 ∈M and c ∈ C,

P (C = c |M = m0) = P (C = c |M = m1)

because if, P (m | c) = P (m), then

P (c | m) = P (m | c)P (c)/P (m) = P (c) = P (c | m′).

Therefore since the scheme is assumed not perfectly secret, there exists m0,m1 and
c such that

P (C = c |M = m0) 6= P (C = c |M = m1).
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Construct A as follows: the adversary offers messages m0 and m1. On receiving c′,
if c′ 6= c it answers a random b′, else if c′ = c it answers 0. Note:

P (C = c) = P (C = c | b = 0)P (b = 0) + P (C = c | b = 1)P (b = 1)

= 1/2 (P (C = c | b = 0) + P (C = c | b = 1))

6= 1/2 (P (C = c | b = 0) + P (C = c | b = 0))

= P (C = c | b = 0).

When c′ 6= c, the adversary is correct with probability 1/2. However, when c′ = c,
then

P (PrivKeav
A,Π = 1 | C = c) = P (b = 0 | C = c)

= P (C = c | b = 0)P (b = 0)/P (C = c)

6= P (b = 0) = 1/2

The advantage when c′ = c is 1/2, but in the case that c′ 6= c, the advantage is
not 1/2. Averaging over the cases, the average is not 1/2 and so the scheme is not
Adversary Indistinguishable.
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