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1. Introduction

There are notes for the Introduction to Cryptography course. This is the math-
ematical background to the RSA cryptosystem including an RP algorithm for pri-
mality testing, and the reduction of breaking RSA to integer factorization.

2. Extended Euclidean Algorithm

For positive integers a, b, let (a, b) be the greatest common divisor (GCD) of a and
b. That is, (a, b) is a number such that it divides both a and b, and for d dividing
both a and b, d also divides (a, b):

(a, b)|a, b and ∀ d s.t. d|a, b then d|(a, b).

Theorem 2.1. The GCD of two integers is an integer linear combination of those
integers,

∃ s, t ∈ Z s.t. sa+ tb = (a, b).

We can prove this along the way of showing how to calculate the GCD.

Date: March 28, 2016.
1



2 BURTON ROSENBERG UNIVERSITY OF MIAMI

Definition 2.1 (Euclidean Algorithm). Given integers a, b such that a > b > 0,
define a sequence of remainders:

r0 = a,

r1 = b,

r2 = r0 % r1,

. . .

ri = ri−2 % ri−1,

. . .

d = rK−1 % rK ,

0 = rK % d

where x% y is the remainder when y divides x.

Theorem 2.2. Given the Euclidean Algorithm, as defined above, then d is the GCD
of a and b.

My favorite proof of this uses the definition of an ideal.

Definition 2.2 (Ideal). Given integers a, b, the ideal generated by a and b is the set
of all integer linear combinations of a and b:

〈a, b〉 = { s a+ t b | s, t ∈ Z }

Proof. I leave it to the reader to prove that, for a > b,

〈a, b〉 = 〈b, a% b〉.

It follows immediately that,

〈a, b〉 = 〈d, 0〉
where d is as given by the Euclidean Algorithm, and the ideal is in fact all multiples
of d.

Since a, b ∈ 〈a, b〉, then d|a, b therefor d|(a, b). Since (a, b)|a, b, then (a, b) divides
all integer linear combinations of a and b, hence ∀x ∈ 〈a, b〉 then (a, b)|x. Since
d ∈ 〈a, b〉 then (a, b)|d. So d = (a, b). �

The Extended Euclidean Algorithm back-substitutes in the Euclidean Algorithm
to calculate the s and t promised by the first theorem.

Algorithm 2.1 (Extended Euclidean Algorithm). Given the ri and K as in the
above Euclidean Algorithm, we have the basis:

d = rK−1 − qKrK .
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Given the induction hypothesis:

d = si−1 ri−1 − ti−1ri
the induction step subsitutes ri = ri−2 − qi−1ri−1,

d = si−1ri−1 + ti−1(ri−2 − qi−1ri−1)
= ti−1ri−2 + (si−1 − ti−1qi−1)ri−1
= si−2ri−2 − ti−2ri−1.

and can therefore by induction derive,

d = s1 r1 − t1 r0 = t b+ s a.

3. Square roots of unity in Zn and Miller-Rabin

Let n be an integer, and Zn be the ring of integers modulo n. We consider all x
such that x2 = 1 (mod n).

Definition 3.1 (Nontrivial roots of unity). In Z∗n, the solutions to x2 = 1 (mod n)
are called the roots of unity. If the roots are ±1, then they are the trivial roots of
unity. Else they are the non-trivial square roots of unity.

Theorem 3.1. Let n be an odd integer. If Z∗n there are always the trivial roots of
unity. If n is not a prime nor a prime power; else there are also non-trivial roots of
unity.

Proof. Since x2 = 1 in Z for x = ±1, it is true also for Z∗n.
If n is a prime or a prime power, let p|n be the prime. Then p cannot divide both

(x− 1) or (x+ 1). Since
x2 − 1 = (x− 1)(x+ 1),

then a square root of unity mod n implies,

p|(x− 1)(x+ 1).

Hence either n|(x+ 1) or n|(x− 1) and so x = ±1 (mod n).
Conversely, if n is not a prime or prime power, let n = a b with (a, b) = 1. Then

there exists s and t such that = s a+ t b = 1. Note,

(s a− t b)2 = (s a)2 + (t b)2 = (s a+ t b)2 = 1 (mod n)

and therefore s a− t b 6= 1 (mod n) is a nontrivial square root of unity. �

Therefore we can demonstrate that n is composite without having to factor n
through the number theoretic properties of n in at least two ways.

Definition 3.2 (Witness to non-primality). Given n. A number w relatively prime
to n is a witness of non-primality of n if either,
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(1) wn−1 6= 1 (mod n), contradicting Little Fermat, or
(2) w 6= ±1 (mod n) however w2 = 1 (mod n).

In the first case, w is called a weak witness. In the second case, w is called a strong
witness.

It turns out that if n is not prime, a random x as a fair chance of being a witness
to primality.

Algorithm 3.1 (Miller-Rabin). Chose a w ∈ Z∗n at random. Do this by picking a
non-zero w ∈ Zn at random and checking that (w, n) = 1. Else w is a witness by
way of having factored n “by mistake”.

Check if wn−1 6= 1 (mod n). If so, w is a weakness witness. Else write

n− 1 = s 2u,

with s odd and set v = ws (mod n) and iteratively replace v with v2 (mod n)
stopping when v = 1 (mod n). If the value before the final squaring is -1, the
test is inconclusive. Else w is a strong witness to non-primality.

This shows that problem of primality is co-RP. A problem is co-RP if non-membership
(i.e. being a composite) has a witness that can be found in polynomial time with high
probability. An algorithm for a problem in co-RP never concludes falsely against the
proposition. In this case, if the algorithm concludes that n is not a prime it has a
witness as definitive proof. However, with vanishing probability the algorithm can
be in error in acclaiming the statement (i.e. that n is a prime), as it only has as
proof not having found a witness otherwise.

Note that a strong witness allows n to be factored.

Theorem 3.2. Let ε be a nontrivial square root of unit in Z∗n, with n odd. Then
(ε− 1, n) and (ε+ 1, n) give nontrivial factors of n.

.

Proof. Since,

(ε− 1)(ε+ 1) = ε2 − 1 = 0 (mod n)

and prime dividing both ε− 1 and ε + 1 is even. So each prime dividing n is either
due to ε− 1 or ε + 1. Therefore (n, ε + 1) will be a nontrivial factor of n consisting
of some of the primes at the full power in n, and (n, ε− 1) will be the remaining of
the primes, again at their full power. �

For an odd n, the number of square roots of unity will be 2r where r is the number
of distinct primes tha divide n. This is bets seen by the isomorphism,

Zn ∼= Πpα||nZpα .
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But 2, no pun intended, is odd. While Zpα has exactly two roots of unity, Z2 has
only 1 root of unity, Z4 has 2, and all Z2j for j > 2 have 4 roots of unity.

Example: The first Carmichael number 561 = 3 · 11 · 17 has the 8 roots of unity 1,
67, 188, 254, 307, 373, 494, 560. As an example, (561, 66) = 3 ·11 and (561, 68) = 17.

When n is even, things are diffierent.

4. RSA and the hardness of factoring

The RSA cryptosystem depends on the difficulty of given an n and a e, and n is
of the form n = pq where p and q are distinct primes, finding a d such that xed = x
(mod n).

Definition 4.1 (RSA public key cryptography). Let p, q be distinct odd primes and
n = pq. Let e be an element of Z∗φ(n), where φ is the Euler phi function, and d the

inverse of e mod φ(n),

e d = 1 (mod φ(n)).

Then for any message m ∈ Z∗n, the encryption of m by public key e is,

Ee(m) = me (mod n)

and the decryption of message c ∈ Z∗n by secret key d is,

Dd(c) = cd (mod n).

Lemma 4.1.

Dd(Ed(m)) = m (mod n)

Proof.

Dd(Ee(m)) = mde = mkφ(n)+1 = mkφ(n)m = 1km = m (mod n).

�

Knowing the value of φ(n), the inverse of e mod φ(n) is efficiently computable
using the Extended Euclidean Algorithm. However, knowledge of φ(n) is equivalent
to factoring n. Consider the equation (over Z),

x2 − (n+ 1− φ(n))x+ n = x2 − (p+ q)x+ pq = (x− p)(x− q) = 0.

It has roots p and q, and the roots can be found in polynomial time using the
quadratic formula.

Knowledge of d is not exactly the same as knowledge of φ(n). However since,

ed− 1 = kφ(n),

then,

xed−1 = xkφ(n) = 1k = 1 (mod n)
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for any x ∈ Z∗n. This fact can be used with Miller-Rabin to force the appearance of
a strong witness of non-primality for n, which consequently can factor n.

Theorem 4.1. Let (e, p, q) be an RSA cryptosystem. With public key (e, n = pq)
and private key d = e−1 (mod (p − 1)(q − 1)). Let A(e, n) → d be an Probabilistic
Polynomial Time algorithm for extracting the secret key from the public key. Then
there exists a Probabilistic Polynomial Time algorithm BA(e, n)→ (p, q) that factors
n.

Proof. Run A(e, n) to get d. Write ed− 1 = 2us where s is odd. Choose a non-zero
w ∈ Zn at random and check if (n, x) = 1, else stop with x a factor of n. Set v = ws

(mod n) and repeatedly set v to v2 (mod n) until it is 1. It must eventually be one
because ed = kφ(n). If a nontrivial root of unity appears, ε2 = 1 (mod n), with
ε 6= ±1, factor n by (n, ε+ 1) or (n, ε− 1). �

Example: Let the primes be 7 and 11 so n = 77. Let e = 7, and φ(77) = 6·10 = 60.
The Extended Euclidean algorithm gives,

43 · 7 + (−5) · 60 = 1

so 7−1 = 43 (mod 60) and d = 43. Then,

7 · 43− 1 = 300 = 22 · 75.

Let w be 29 (after a few choices). Then 2975 = 43, and 432 = 1. Then (44, 77) = 11
and (42, 77) = 7.


