
Burt Rosenberg

Math 220/317: Programming II/Data Structures 1

Loop Invariants Out: 12 October, 1992

Loop invariants make designing and debugging code easier. We want to
prove that the outcome of a while-loop in our program is correct. The
method of loop invariants has us set up four mathematical statements:

1. the Precondition, the assumptions you start with,

2. the Test, controls loop termination,

3. the Loop Invariant,

4. and the Postcondition, the situation you want to end with.

The idea is to have each of these statements true at the moment you pass
by their “assertions”.

Arrange the Precondition, Test, Loop Condition and Postcondition in
your programs, homeworks or exams as follows:

...
{Assert Precondition}
while Test do
begin

S1 ; S2 ; ... ; Sn ;
{Assert if Test then Loop Invariant}

end
{Assert Postcondition}
...

By Assert X we mean that if one were to stop the program at that moment
and evaluate the statement X, if would be true. This evaluation happens
in the context of certain truths, called hypotheses. The trick is to go from
hypotheses to assertions which then become the new hypotheses. Employing
the notation in Table 1, we have the following summary:

If the R, I and O are the Precondition, Loop Invariant and Postcondition,
respectively, of a while-loop, S represents the body of the while-loop, and n
is the number of passes through the while loop, the sequence of assertions
and statements is,

R ! ; (S ; I !)n−1 ; S ; O ! if n ≥ 1
R ! ; O ! n = 0

Math 220/317: Programming II/Data Structures 2

R ! Assert Precondition true.
I ! Assert Loop Invariant true.
O ! Assert Postcondition true.
T Test is true.
¬T Test is false.
S Do while-loop body, statements S1 through Sn.

Table 1: Glossary of symbols.

The method of loop invariants proposes to show that each assertion in the
above listing follows from it predecessor. By mathematical induction, then,
one can show that the truth of the Postcondition, the thing you want, will
follow from the truth of the Precondition, the thing you assume. Here is
how it works:

1. You show that the Precondition is true when asserted. This involves
assumptions on the correctness of the input data and the program
performance up to this point. In symbols:

R ! (1)

2. You show that the Loop Invariant is true when asserted. This involves
two cases.

(a) If this is the first time through the loop, the assumptions are
that the Precondition was true, Test as true before the while-
loop body was run, and Test is again true after the while-loop
body was run. You prove that under these assumptions Loop
Invariant is still true. In symbols:

R ! ; T ; S ; T ⇒ I ! (2)

(b) Else this is not the first time through the loop. Assume that the
Loop Invariant was true before this pass through the loop and
that test was true before and after this pass of the loop,

I ! ; T ; S ; T ⇒ I ! (3)

Math 220/317: Programming II/Data Structures 3

3. You show that the Postcondition is true when asserted. Again, this
involves two cases.

(a) The loop is never run. The Postcondition must follow from the
Precondition and the Test being false:

R ! ; ¬T ⇒ O ! (4)

(b) The loop is run. You must show the Postcondition follows from
the previous assertion of the Loop Invariant and that the Test
has changed from true to false during this pass of the loop:

I ! ; T ; S ; ¬T ⇒ O ! (5)

Now the Postcondition follows from the Precondition no matter how many
times through the while-loop. The proof is by mathematical induction and
is left as an exercise.

Let us take as an example the procedure list-list in Figure 1. We
assume l equals nil signifies an empty list. Let us prove the program correct
using loop invariants.

1. Assert Precondition. Either l is nil or it is not. If it is nil then we
must show that Postcondition is true. The Postcondition is that all
elements have been written but l is nil means the list is empty. So we
have written all its elements. If l is not nil then we must show that
Loop Invariant is true. Pointer l points to the first element of the list
so there are no elements before l and nothing has been written. So the
Loop Invariant is true. Therefore R !.

2. Assert Loop Invariant. If the while-loop is entered the first time, the
Precondition tells us the the Loop Invariant is true when the loop is
first entered. So we only have to prove formula 3 — formula 2 follows
automatically. Assume I ! and T . Before the code S, pointer l points to
an unwritten element and all elements before this in the list have been
written. The code S writes this element and advances the pointer.
After advancing, we assume T , so l points to another element in a
list. Therefore, l now points to an unwritten element and all elements
before this in the list have been written, i.e. I ! ; T ; S ; T ⇒ I !.

3. Assert Postcondition. Suppose the loop is never run, that is T is false
when the Precondition is asserted. Then the Precondition reduces to

Math 220/317: Programming II/Data Structures 4

procedure list-list(l : listPntr) ;
begin
{Assert Precondition:}
{ If (l<>nil) then (Loop Invariant) }
{ else (Postcondition) }
while l<>nil do
begin

writeln_string(l^.str) ;
l := l^.next ;
{If l<>nil then Assert Loop Invariant: }
{ Pointer l points to an element of the list}
{ which has not yet been written; but all the }
{ elements in the list ahead of this one have }
{ been written.}

end ;
{Assert Postcondition:}
{ All elements of the list have been written.}

end ;

Figure 1: The procedure list-list

the Postcondition. So R ! ; ¬T ⇒ O !. If the loop was run, then
before the last time through the loop, the Loop Invariant was true.
That is, l pointed to an unwritten element and all elements before
this in the list have been written. The code S wrote this element and
advanced to pointer to its present value, which is nil. So we have just
listed the last element in the last and all previous elements have been
already listed. Hence I ! ; T ; S ; ¬T ⇒ O !.

Exercises

1. Use mathematical induction to proof that the method of loop invari-
ants works. That is, show that from formulas 1–5 follow R ! ⇒ O !
for any n ≥ 0.

2. Prove the following program is correct using the method of loop in-
variants.

Math 220/317: Programming II/Data Structures 5

function max-list(l:listPntr) : integer ;
var

i : integer ;
begin

if l=nil then {error} i := -1 ;
else begin
i := l^.number - 1;
{Assert Precondition: }
{ (l<>nil) and (i<max-list(l)) }
while l<>nil do
begin
if l^.number > i then i:= l^.number;
l := l^.next ;
{if l<>nil then assert Loop Invar.}
{ l points to a list element not yet }
{ looked at, and i holds the largest }
{ number on the list before l }

end
{Assert Postcond. i is the largest number }
{ on the list. }

end ;
max-list := i ;

end ;

3. Write and prove correct using the method of loop invariants a program
which puts a list of integers in ascending order by repeatedly finding
the largest integer in the input list, moving it to the head of the output
list, deleting it from the input list.

