
Burt Rosenberg



Math 220/317: Programming II/Data Structures 1

Problem Set 3 Out: 5 October, 1992
Due: 12 October, 1992

Reading Assignment

Read

• Chapter 3, Sections “Programming with Linked Lists” and “Variations
of the Linked List”.

• Chapter 4, Sections “Abstraction” and “Abstract Data Types”.

Goals

More practice using pointers and linked lists: dummy header technique,
searching a linked list and moving elements in a list. Introduction to code
instrumentation.

Assignment

You will write two programs, modifications of last week’s assignment. The
first program, ps3a.pas, will use a linked list with a dummy header element
to keep track of all the words in the file datafile.dat and for each word a count
of how many times that word appears in datafile.dat. This program will be a
modification of last week’s ps2.pas. In ps3b.pas, the second program, we will
attempt to improve the performance of ps3a.pas by using the move-to-front
heuristic.

The output will include,

1. The words in the file, in reverse order of their first occurrence, and with
each word, the number of times it appears in the file.

2. A count of the total number of words in the file.

3. A count of the total number of unique words in the file.

4. The total number of elements that were searched during the program.



Math 220/317: Programming II/Data Structures 2

Many people write too much code before testing. It is often hard to know
where to break a large programming assignment into steps. The following
step-by-step instructions will help you organize your progress.

1. Copy [.ps2]ps2.pas to [.ps3]ps3a.pas and modify the list subroutines to
use a dummy header element. Test that the program gives the same
outputs as ps2.pas.

2. Write functions

eq string(s, t) =

{
T s = t, with s, t of stringType
F else.

search list(l, s) =

{
p p ∧ .next ∧ .str = s
nil else.

Change your main-line program to use search list to insert an element
only if it has not be found in the list. Test thoroughly before proceeding!

3. Finish ps3a.pas by writing subroutines,

procedure increment_count( p:listPntr ) ;

{increments p^.next^.cnt}

function length_list( l:listPntr ) :integer ;

{returns length of list l, except header}

function sum_count( l:listPntr ) :integer ;

{returns sum of all p^.cnt in l, except header}

Modify create list and search list to keep track of the total number of
elements searched. Test your finished ps3a.pas on several inputs, both
long and short.

4. Copy ps3a.pas to ps3b.pas and continue. Write,

procedure move_to_front( l,p:listPntr )

which takes element p and from its current position in list l and moves
it to the front. Modify the main-line program to use this procedure
to implement the move-to-front search heuristic. Test this program on
several inputs and compare the number of searched elements made by
this program with the number made by ps3a.pas.


