Burt Rosenberg

Problem Set 3 Notes

The output of ps3a.pas and ps3b.pas should be:

1. The words in the file, in reverse order of their first occurrence, and with each word, the number of times it appears in the file.
2. A count of the total number of words in the file.
3. A count of the total number of unique words in the file.
4. The total number of elements that were searched during the program.

For example, the file:
one fish two fish red fish blue fish
gives the output:

```
8words in the text
5 unique, they are:
1 blue
1 red
1 \text { two}
fish
1 one
27 elements searched
```

Let's go through this example in detail. We will keep the total number of elements searched in the count field of the dummy header. Before reading any words, the list is,

$$
(\mathrm{X}, 0)
$$

Where we represent a record by (str,cnt). The word "one" was read, the list was searched and one was inserted at its head. (We will count the dummy header element),

$$
(\mathrm{X}, 1) \longrightarrow(\text { one }, 1)
$$

"Fish" is read, the list searched and fish inserted at its head. The list was two long before the insertion of fish, so the new number of total searches is 3 ,

$$
(\mathrm{X}, 3) \longrightarrow(\text { fish, } 1) \longrightarrow(\text { one }, 1)
$$

"Two" was inserted at the head after the unsuccesful search of a three element list so now,

$$
(\mathrm{X}, 6) \longrightarrow(\text { two }, 1) \longrightarrow(\text { fish }, 1) \longrightarrow(\text { one }, 1)
$$

When the second "fish" was read, the program found that fish was the third element in the list, counting the dummy header node,

$$
(\mathrm{X}, 9) \longrightarrow(\text { two }, 1) \longrightarrow(\text { fish }, 2) \longrightarrow(\text { one }, 1)
$$

"Red" was tacked on the the front after an unsuccessful search of a 4 element list,

$$
(\mathrm{X}, 13) \longrightarrow(\text { red, } 1) \longrightarrow(\text { two }, 1) \longrightarrow(\text { fish, } 2) \longrightarrow(\text { one, } 1)
$$

The third "fish" was found buried as the fourth element of the list,

$$
(\mathrm{X}, 17) \longrightarrow(\text { red, } 1) \longrightarrow(\text { two, } 1) \longrightarrow(\text { fish, } 3) \longrightarrow(\text { one, } 1)
$$

"Blue" was added to the front of a 5 element list,

$$
(\mathrm{X}, 22) \longrightarrow(\text { blue }, 1) \longrightarrow(\text { red }, 1) \longrightarrow(\text { two }, 1) \longrightarrow(\text { fish }, 3) \longrightarrow(\text { one }, 1)
$$

The final "fish" was found 5 elements from the list root,

$$
(\mathrm{X}, 27) \longrightarrow(\text { blue, } 1) \longrightarrow(\text { red, } 1) \longrightarrow(\text { two }, 1) \longrightarrow(\text { fish, } 4) \longrightarrow \text { (one, } 1)
$$

