
Burt Rosenberg

Math 220/317: Programming II/Data Structures 1

Problem Set 6 Out: 9 November 1992
Due: 18 November 1992

Reading Assignment

Read:

• Finish reading Chapter 10, Tables and Trees.

• Read Chapter 8, Stacks, and Chapter 9, Queues.

Goals

Practice programming with trees. Improve our style of user interface.

Assignment

Add deletion to the program you wrote for the previous assignment. The
user interface will be as follows. The program accepts the commands,

• Insert — places the program in insert mode.

• Delete — places the program in delete mode.

• Pretty — pretty-prints the tree.

• List — lists the tree elements in order.

• Quit — exits the program.

• n, where n is any integer — if in insert mode, the program inserts the
number n in the tree. If in delete mode, the program checks to see if n
is in the tree and deletes it if it is. Else a message is printed informing
the user that n cannot be deleted.

Initially the program starts in insert mode. If an input is not one of these
six forms, you can simply ignore it. You can also assume that only the first
letter of the command is important. That is, instead of “Delete” the user
could just as well type “Dinosaur”.

Math 220/317: Programming II/Data Structures 2

Useful programming techniques for accomplishing this user interface are
illustrated in the program below.

The input is read first as a string s. The first character is checked using
the pascal case construct to separate into cases. If the first character is a
digit, the sign + or the sign −, the string is reread as an integer using readv.
The other entries in the case statement separate individual commands.

Define the flag insert mode and initially set it true. The case statement
entry for the delete command sets this flag false. Likewise, the case statement
entry for the insert command sets it true. The entry for a digit not only
converts the input to an integer but references this flag to find out what to
do with the number.

Extra Credit

Implement the command file which prompts the user for a file name and
then accepts input from the file, using the same format as described above,
until a quit command is encountered. Then the program returns to the user
for interactive input. To make things simple, you can assume that the file
command is not active during file input.

So far we have used external files, whose names are fixed at compile time,
appearing in the program header next to input and output. The file command
requires you to use an internal file whose name is chosen at run time. Such
files do not appear in the program header and need be opened by you before
reading. The program below shows how the open statement accomplishes
this.

The most important reason for having input from files is to allow thorough
testing of your programs. File input means that you can record exactly how
your program was tested and the test can be verified by others. Also, other
programs can build test files and challenge your program to run them.

If you implement the file command, you should also implement comments.
If “!” is the first character of a line, or if the line is empty, the line is discarded
by the program. The only use of such lines is to document the file.

For extra credit, write your test input in a file, document it with com-
ments, and submit it with your programming rsolution.

Math 220/317: Programming II/Data Structures 3

Sample Program

{}

{ A program to demonstrate how to }

{ reread the input under a different}

{ format.}

{}

{ Prof. Rosenberg}

{ Univ. Miami}

{ 6 November, 1992}

{}

program inp(input,output) ;

type

string = varying [50] of char ;

function FirstChar(s: string) : char ;

var

i : integer ;

begin

if s.length=0 then FirstChar:=chr(0)

else

begin

i := 1 ;

while (s.body[i]=’ ’) and (i<s.length) do i := i + 1 ;

FirstChar := s.body[i]

end

end ;

var

f : text ;

s : string ;

c : char ;

i : integer ;

insert_mode : boolean ;

Math 220/317: Programming II/Data Structures 4

begin

insert_mode := true ;

writeln(’Welcome to the test!’) ;

c := ’ ’ ;

repeat

case c of

’0’..’9’,’+’,’-’ : {number command, insert or delete i}

begin

readv(s,i) ;

writeln(’The number you entered is: ’,i)

end ;

’i’,’I’ : {insert command, change to insert mode}

insert_mode := true ;

’d’,’D’ : {delete command, change to delete mode}

insert_mode := false ;

’f’,’F’ : {file command, get an input file}

begin

write(’ filename>’) ;

readln(s) ;

open(f, s, history:=old) ;

reset(f) ;

readln(f,s) ;

writeln(’From the file I read: ’,s) ;

close(f)

end ;

’!’,’#’ ,’ ’: {comment, disregard line} ;

’q’,’Q’ :{exit command, never really gets here.} ;

otherwise writeln(’What kindda lousy input is that?’)

end ;

write(’What do you want?>’) ;

readln(s) ;

c := FirstChar(s)

until (c=’q’) or (c=’Q’) ;

writeln(’Bye-bye’)

end .

