> Burt Rosenberg

Problem Set 7

Reading Assignment

Read:

- Read Chapter 11, Graphs.
- Read Appendixes A, Mathematical Induction, and B, Proof of Theorem 10-2.

Goals

Practice programming with graphs. Implementation of a complicated algorithm, top-down design.

Assignment

Implement Dijkstra's shortest-path algorithm. The program accepts the commands,

- Go - prompts for the source vertex then runs the shortest-path algorithm.
- List - prints out the current graph.
- Answer - Prints out the answer to the shortest-path problem. For each vertex n give the length of the shortest-path from the source to n and the parent of n along the shortest path.
- Quit - exits the program.
- $n m w$, where n, m and w are positive integers. This means: make an edge of weight w between vertices n and m.

Example

>231
$\begin{array}{lll}>3 & 1 & 1\end{array}$
>123
>List
Graph:
Vertex Vertex Weight
$\begin{array}{lll}2 & 3 & 1\end{array}$

3	1	1

133
$>G o$
=>Enter source: 2
Computing Shortest-paths from 2 ...
Done.
>Answer
Shortest-Paths
Vertex Parent Length
$1 \quad 3 \quad 2$
2 - 0
$\begin{array}{ll}3 & 2\end{array}$
>Quit

Extra Credit

For extra credit, implement the command How?, which prompts for a vertex n then gives the entire shortest path from the source to n. After the Answer command of the previous example, the How? command would give this output:

```
>How?
=>Enter vertex: 1
    2 -> 3 -> 1 : length=2
```

