
1 Loop Invariants

26 August 1993

1. Control Structures

(a) Straight line

(b) Branch: case, if then else.

(c) Loop: for, repeat until, while do.

2. Loops

(a) ( r S u C ) <==> ( S ; w ~C d S )

(b) ( w C d S ) <==> ( if C { r S u ~C })

(c) ( for i=I to F do S ) <==> ( i=I ; w i<=F do {S;i++})

(d) So while can simulate anything, a repeat + if = while, and for
is incable of inifite regress.

(e) Proof: transformation of flow charts:

(f) break statement, using flags, forcing the termination condition, goto’s
and returns. Example: For each thing in a list, do something; how
to break out on error doing something?

3. Subroutines and Goto’s: How to they fit in?

(a) As straight-line code:

The Golden Rule of Subroutines: Call a subroutine when
passing from one level of detail to another.

(b) As loops: Recursion.

(c) Not at all, goto’s and spaghetti code, they just don’t fit in, and so
are abandoned.

4. Loop Invariants

(a) Format: {assert I} ; while C do { S; assert I };

(b) Loop Invariant I, true at assertion.

(c) Termination: advance towards C false.

(d) Goal: invariant + termination = goal.

(e) Initialization.
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5. Invariant Example, max integer in array A[1..n].

(a) Invariant: M = max
{

A[j]
∣∣ 1 ≤ j ≤ i

}
.

(b) Discussion: choice of invariant driven by the fact:

There is no such thing as the maximum of a empty set.

(c) Termination: i = n, advance i by one each time through the loop.

(d) Goal, M is maximum in array.

6. Comment on Zeno’s Paradox: Let I be Achilles’ arrow is at distance d,
then consider: d=0; while d<1 do d=d+(1-d)/2;

2 Loop Invariants continued

31 August 1993

1. Loop Invariants, another example: Find first negative number in an array.

(a) Invariant: All numbers in
{

A[j]
∣∣ 1 ≤ j < i

}
are positive.

(b) Termination: i > n or A[i] < 0, increase i by one each time through
the loop.

(c) Goal = invariant + termination.

(d) Initialization: i = 1.

(e) Notes:

i. Choice of invariant driven by the fact that the answer could be
“none.”

ii. Lack of short-circuited AND in Pascal.
iii. Sentinel bound: Let A[n + 1] = −1.

2. Extended Example: greatest common divisor of two integers.

(a) Divisibility: ∀ a, b ∈ Z, (a | b ⇐⇒ ∃k ∈ Z : ak = b).

(b) Common Divisor: ∀ a, b ∈ Z, cd(a, b) =
{

c ∈ Z
∣∣ c | a, b

}
.

(c) Greatest Common Divisor: ∀ a, b ∈ Z, gcd(a, b) = max cd(a, b).

i. gcd(2, 4) = 2, gcd(a, ka) = a.

ii. gcd(5, 7) = 1, gcd(p1, p2) = 1, for two distinct primes. In gen-
eral, an a, b such that gcd(a, b) = 1 are called relatively prime.

iii. gcd(1547, 560) = 7.

(d) Notes:

i. ∀ a ∈ Z, 1 | a, hence cd(a, b) is never empty.
ii. ∀ a ∈ Z, a | 0, hence cd(0, 0) = Z. We shall define gcd(0, 0) = 0.
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iii. ∀ c ∈ cd(a, b), c | gcd(a, b).

(e) Euclidean Algorithm:

Keep replacing the larger of a, b by their difference, until the
answer becomes obvious.

(f) Key lemma: ∀a, b ∈ Z, gcd(a − b, b) = gcd(a, b). Proof: Show
cd(a, b) ⊆ cd(a− b, b) and then that cd(a− b, b) ⊆ cd(a, b).

(g) Invariant: Let C be the gcd we seek. We keep integers a, b according
to the invariant: C = gcd(a, b) and a ≥ b ≥ 0.

(h) Termination: b = 0, we advance by decreasing the sum a + b each
time through the loop.

(i) Goal = invariant + termination: C = (a, 0) = a.

(j) Initialization: Make invariant true by setting a and b to the input
values, perhaps sign corrected and swaped.

3 Text files and strings

2 September 1993

1. Files, general files, streams, text files.

2. Assignment compatibility of files.

3. Text Files: reference page 233–235, Oh! Pascal!

(a) A text file is a sequence of characters including special end-of-line
and end-of-file characters.

(b) File always ends with eoln eof sequence.

(c) Each open file has a cursor over the next character to read.

(d) Boolean valued function eoln is true if cursor over an eoln; eof is ture
if cursor over an eof.

(e) What character is at the cursor position of an eoln or eof is imple-
mentation dependent.

i. In Standard Pascal, eoln is a blank and it is illegal to read and
eof.

ii. In Turbo Pascal, eoln is the two character sequence crlf ( chr(13)
chr(10)) and eof is a control-Z (chr(26)).

(f) Read will not read past an eoln, readln must be called; write will not
write an eoln, writeln must be called.

(g) Example:
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while not eof do begin
while not eoln do begin

read(Ch) ; write(ch) ; end ;
readln ; writeln ; end ;

4. Strings. var s : string [MAXLENGTH]; : reference page 106, 301–303,
Oh! Pascal!

(a) A string is “almost” an array of characters.

(b) Strings have maximum lengths and current lengths.

(c) Maximum lenghts do not affect type.

(d) length(s) : integer is the string’s current length.

(e) s[i] : char is the current actual i-th character of the string, for
1 ≤ i ≤ length(s)

(f) Other SYSTEM functions on strings are:

i. Concat(S1,...)->string.
ii. Copy(S,Indx,Cnt)->string.
iii. Insert, Delete, Pos.

5. Reading words: Case study of the program on pages 241–242 of Oh! Pas-
cal!.

(a) Invariant: Exist count completed words to the left of the cursor; and
InAWord is true iff cursor was just over a currently incomplete word.

(b) Termination: advance one character towards the end of file.

(c) Goal: assuming eof is after a eoln, count words because we completed
the last word.

(d) Initialization: no words and we were not over a completed word.

(e) Each time through the loop:

i. Case non-blank: We check that InAWord is true.
ii. Case blank: We check that InAWord false, and if word just ended

that count is incremented. By the invariant, word just ended if
InAWord was true last time. That is, whenever InAWord goes
from True to false.

(f) Note filter style of the cascade of the two conditionals.

6. Notes:

(a) Students didn’t believe all Pascal’s had strings.

(b) Some students didn’t remember arrays.
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(c) Needed to introduce ASCII better.

(d) Some students didn’t believe that a text file in Pascal needed an eoln
before an eof. If not, readln is useless.

I should have done it this way:

(a) Characters and Ascii.

(b) Arrays and strings.

(c) Text files w/ specific advice for Ultrix, VMS and Turbo.

7. Streams are not supported in PASCAL!

4 Pointers

7 September 1993

1. Memory model. address → cell .

2. Cell contains an integer of fixed maximum size, or one symbol from a fixed
finite set.

3. Address identifies in some way the cell, and are sequenced. Can think of
the addresses as being integers.

4. Byte: often a cell is a byte. Everything is built up from bytes, and certain
composites of consecutive bytes can be used just as easily as bytes.

8 oz = 1 cup 2 cups = 1 pint
8 bits = 1 byte 2 bytes = 1 word

Also, quart is a longword; a half-gallon is a quad-word.

5. What is a byte? byte = char = ASCII.

6. What is a word? Integers, positive and negative, however:

MAXINT + 1 -> (-MAXINT)-1
2 * MAXINT -> -2

7. What is a quad word? Floating point computations.

8. What is an address? A variety of approaches which Pascal trys to make
uniform.

(a) Linear memory: an address is a big integer. Ex. MC68000, it is a
long-word.
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(b) Segmented memory: an address is a pair of integers which are not in-
dependent. Ex. Intel 8086, a pair of words which are added according
to a ∗ 16 + b.

(c) Trade-offs: speed and size in favor of Intel approach, ease of pro-
gramming in favor of 68000 approach.

(d) Pages and Virtual: no fixed correlation between address and cells.
Hardware negotiates invisibly to programmer. Advantages: Large,
sparse memory space, use of fast expensive memory for some of the
memory space.

9. How to compilers use addresses?

10. Address of variables: Address as a static entity.

(a) Maintains a memory map for “dataland”.
(b) Assigns variables to a fixed address and reserves enough consecutive

bytes for the variable.
(c) This is why define before use and type are required.
(d) Name of variable is turned into a use of its address at compile time.

11. Arrays and records, Address as objects to calculate with.

(a) Arrays: uses the fact that memory addresses can be treated as inte-
gers. Assigns a base address and enough bytes for the entire array.
Inserts code to calculate address of array element from base, index,
and element size.

(b) Non-zero based and multidimensional arrays.
(c) Records: offset needed because it could be an array of records.

12. VAR parameters and Indirect Addressing. Addresses as things you can
store.

(*) Recursion and stack based local var.

13. The Heap: a memory space available to the user to dynamically create
variables while the program is running.

(a) Getting memory, memory management. (Assume infinite, no reuse.)
(b) Returning to the user a pointer to the memory.
(c) A Pointer: A variable which stores an address.
(d) The type of a pointer includes the type of what it points to. This is

to make it harder to make mistakes.
(e) There is the pointer, and what the pointer points to. There is also

the address of where the pointer is stored. This last is hidden, the
first is simply the pointer’s name. The second is indirect addressing
and uses the dereferencing arrow ^.
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5 Pointers

9 September 1993

1. New, Dispose and Nil.

2. Syntax: var a : record a: integer ; end ;

3. Syntax: var p : ^ integer ;

4. Syntax: p^ := 1 ;

5. Assignment compatibility of pointers. Based on the strict compatibility
of what they point to.

6. Note: if “pointer to” introduced a new type, then it would be impossible
to have a record include a pointer to itself.

6 Linked Lists

14 September 1993

1. A linked lists, the data structure.

2. Adding to ehad, traversing and printing.

3. General insertion and dummy headers.

4. Deletion.

5. Variants: last pointers, circular lists, doubly linked lists.

6. DOS file layout and the File Allocation Table.

7 Boolean Logic

16 September 1993

1. Boolean Algebra

(a) Boolean variables receiving boolean valued expressions.

(b) Operations AND, OR and NOT.

(c) Absorptive Laws:

i. A ∧ (A ∨B) = A.
ii. A ∨ (A ∧B) = B.
iii. Proof: Truth table method of proof.
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(d) DeMorgan’s Theorem:

i. ¬(A ∨B) = ¬A ∧ ¬B.
ii. ¬(A ∧B) = ¬A ∨ ¬B.
iii. Proof: Venn Diagram: a short version of Truth Table. Four

points and circles enclosing points true for sentence.

(e) Distributive Laws:

i. A ∨ (B ∧ C) = (A ∨B) ∧ (A ∨ C).
ii. A ∧ (B ∨ C) = (A ∧B) ∨ (A ∧ C).
iii. Proof: Venn Diagram: three circles enclosing eight points.

2. Examples:

Numbers which are odd and positive are exactly those which
are neither even nor negative.

(a) O(n) ∧ n > 0 = ¬(E(n) ∨ n ≤ 0) = ¬((E(n) ∨ n = 0) ∨ n < 0) =
¬(E(n) ∨ n < 0).

(b) The complement of the set 1, 3, 5, . . . is the union of evens, 0, 2, 4, . . .
and negatives, −1,−2,−3, . . ..

However, the even and positive numbers do not include all which
are neither odd nor negative, because zero should not be not
included.

3. Stacks, Sedgewick’s example ... didn’t work.

8 Personal Summary

Pointers: best perhaps to keep to a cell and pointer model, where the cell is an
array and can have certain addressing calculations. That is, it is important to
see the cell as cut out of a linear space, but it is easier to draw as a cell.

Begin with a variable i. It has a name, a place in memory, and this place
has an address. The name and the address are one. They are written beside
a cell representing the memory location. Using a variable depends on whether
it appears at the left or right of an assignment. Its use could be a retrieve at
the location or a store to the location. The value of a variable is implicitely the
retrieve from the location.

An array is a bunch of places starting at a location. The name could be
synonymous with the address of the first cell. The data is placed into the cell in
order so that arithmetic gives you direct access. Records and arrays of records
are similar.

Indirect addressing is when you store the location in a variable. The variable
is called a pointer.
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