
Dear Robert,
Return by 3 P.M. Thursday, October 7.
I have included a diskette with my unique.exe and moveto.exe programs

in subdirectory homework. The subdirectory data has three versions of the
constitution, very short, short and full. Run times on DOS are as follows:

File Number Runtime
words unique unique moveto

constitu.vsm 2322 618 1:36 0:47
constitu.sml 4529 917 4:40 1:52
constitu.ful 7587 1142 10:40 3:21

My program requires that the input be named test.txt, and outputs to the
console. The runs for which the above data was copied were captured by I/O
redirection and can be found in the files named runI.X, where 1 is 1, 2 or 3,
and X is unq or mvt.

An important part of the grade this time is the program’s efficiency.
Therefore:

run all this week’s assignments on the files constitu.vsm, con-
stitu.sml and constitu.ful and grade they students accordingly.

A program which cannot run the smallest of these receives at best a 3. Run
consitu.ful only for the programs which seem worthy of it. Most will crash on
constitu.vsm, and many will already by too time consuming on constitu.sml.

We are to impress upon the student the relative importance of algorithmic
efficiency. This means looking at the constant factor of the leading term (and
only the leading term) of the runtime as a function of problem size. What
affects the leading term is what occurs inside the inner loop of the program.
Here, the inner loop is the iterative searching through the list. Therefore,
move-to-front pays off despite the involved pointer-pastings. Despite also if
a student frees and reallocates a memory cell during the move-to-front. All
these things affect the constant of the linear term, but the unique program
was in fact O(N2), so none of that matters in the face of this reducing this
higher order term.

The typical program is polynomial time.

It should become the student’s second-nature to immediately look
at what contributes to the highest order term of this polynomial
and reduce or eliminate that.

1



This is the most important concept so let’s put our initial energy there.
In Pascal, efficient code and good code contradict each other. We will

allow inefficiency in at least the following two areas:

1. Procedure calls in Pascal are slow. But we will not ask the student to
minimize them.

2. Value passing of structures are slow. But we will not contradict our
efforts have the student minimize var and global parameters into sub-
routines.

The extra credit is graded as 1 point for an acceptable program. Keep
this point separate. As for the student’s discussion, look for richness of
the data they based their conclusions on and ignore entirely the conclusions
themselves. We are not yet interested in the conclusions, but in the methods
and fairness of the evalution.

2


