
Burt Rosenberg

Math 220/317: Programming II/Data Structures 1

Problem Set 7 Out: 21 October, 1993
Due: 29 October, 1993

Goals

Practice with trees and heaps. Exercise in algorithm implementation.

Reading Assignment

Read Chapters 6–9, 11 and 12 from Algorithms.

Programming Assignment

You are to implement a heap using a pointer-based implementation of ordered
binary trees. Implement heap operations insert and delete-min. Two versions
of your program are required: a test and a run version. Switching between
versions should be accomplished by changing the value of a CONST variable
and recompiling the program.

Use the following TYPE definitions as a model for your heap:

type

TreeNodeP = ^ TreeNodeR ;

TreeNodeR = record

data : DataType ;

{ perhaps some more fields }

l, r : TreeNodeP ;

end ;

HeapR = record

h : TreeNodeP ;

{ perhaps some more fields }

end ;

Heap = ^ HeapR ;

The heap operations you are to implement are:

function HeapCreate : Heap ;

{ Returns a pointer to a newly created, empty heap.}

Math 220/317: Programming II/Data Structures 2

function HeapEmpty(h : Heap) : Boolean ;

{ Returns True if h is empty. }

procedure HeapInsert(h : Heap ; d : DataType) ;

{ Given a heap h, and a datum d, mutates h into a new heap

which is the elements of h with d inserted. }

function HeapDeleteMin(h : Heap) : DataType ;

{ Given a heap h, returns the minimum datum of the heap,

and mutates h to be h with the minimum deleted. }

Here is a description of the two versions of the program:

1. The test version begins with an empty heap and accepts text from the
keyboard. Any word not beginning with a “-” is inserted into the heap.
Words beginning with a “-” signal that a delete-min operation is to be
performed. After each insert or delete-min the tree is printed pre-order
in the fashion of the previous homework.

2. The run version begins with an empty heap and accepts text from
a file. Words in the file are inserted into the heap or a delete-min
is performed, according to whether or not the word does not begin
with a “-”, as in the test version. However, no pre-order output is
given between words. Instead, at end-of-file, the words are printed in
ascending dictionary order using repeated applications of delete-min.
(Essentially accomplishing heap-sort!)

Math 220/317: Programming II/Data Structures 3

Algorithmic Notes

You will have to find the rightmost leaf of the bottom level of the tree. How
can this be done? Here is a hint for one possible approach. Suppose the heap
knowns how big it is, perhaps a field is included in HeapR which records this.
Mentally number the tree nodes according to the following pattern:

1 1

/ \ / \

2 3 10 11

/| |\ <==> / | | \

4 5 6 7 100 101 110 111

/| |\ /| |\ / | |\ /| | \

8 9 ... 1000 1001 ...

On the left the nodes are numbered in decimal, on the right, they are num-
bered in binary. Note that the number of a node, when written in binary,
describes the path from the root to the node. Reading the binary represen-
tation from left to right, discarding the initial 1, read a 0 as “descend left”
and a 1 as “descend right.”

Let n be the number of the leaf node you are trying to find. Find the
integer k such that,

2k ≤ n < 2k+1.

Then node n is in level k, where level 0 is the level of the root. Repeat the
following,

1. If the leftmost bit of n is 1, strip it off,

if n ≥ 2k then n← n− 2k

2. Shift all the bits in n to the left one place,

n← 2n

3. Test the leftmost bit for one or zero, and descend in the tree accordingly,

if n ≥ 2k then go right, else go left

4. Termination conditions: Since you are searching for a leaf, you do not
have to count bits. When further progress would mean following a nil
pointer, you have arrived. Else repeat from Step 1.

Math 220/317: Programming II/Data Structures 4

Extra Credit

Implement a linear-time build-heap. A possible approach is,

• Build a complete tree on nodes carrying all the elements, not worrying
about heap order.

• Traverse the tree, bottommost rightmost node first, moving leftwards
and upwards, to slowly establish heap order everywhere.

You might make use of the Breadth-First tree search algorithm described by
Sedgewick, page 48, to organize both the build and “heapify” traversals.

