
Burton Rosenberg

Math 220/317: Programming II/Data Structures 1

Final December 14, 1993. 5:00–7:30 PM

There are six problems each counting equally. Show all your work, partial
credit will be awarded.

Name:

Problem Credit

1

2

3

4

5

6

Total

On my honor, I have neither given nor received
aid on this examination-assignment.

Signature:

Math 220/317: Programming II/Data Structures 2

1. Show that these two program fragments are identical. The variables A,
B and C are declared as boolean, and S1 represents a statement.

Program Fragment 1:

if A then

begin

if B then S1

else if C then S1

end ;

Program Fragment 2:

if ((A AND B) OR (A AND C)) then S1 ;

Math 220/317: Programming II/Data Structures 3

2. Change the following while loop into an exactly equivalent program
which uses only recursion. That is, define a procedure or function which
does not use any while or repeat loops (nor any goto’s), but which
can call itself, and replace the line labeled “Replace Me” with a call to
this function or procedure.

a[N] := 0 ;

i := 1 ;

while a[i]>0 do i := i + 1 ; {REPLACE ME}

{Postcondition: i is minimum >= 1

such that a[i]<=0. }

Math 220/317: Programming II/Data Structures 4

3. Write a function that reverses the order of the elements on a list. For
instance, if the list L looks like:

r A r B r
�

�C- - -

then Rev(L) should look like:

- - -r C r B r
�

�A

Take as a list definition:

Type

ListPntr = ^ ListRec ;

ListRec = record

d : dataType ;

n : ListPntr ;

end ;

List = ListPntr ;

Hint: You can do it in a single front to back pass over the list, without
the need for new or dispose. Or you might try recursion, but this is
not really simpler.

Math 220/317: Programming II/Data Structures 5

4. Rotate the following tree at X. That is, make node X the root via a
single rotation.

��
��

HH
HH

@
@

@
@

@
@

�
�

�
�

�
�

tt tt t tt t t
X

Math 220/317: Programming II/Data Structures 6

5. For this problem and the next, let X[1..N] be a global array of integers.

Consider the following procedure which exchanges the largest element
among X[a..b] with X[a].

procedure FindLarge(a,b:integer) ;

var i,j, temp : integer ;

begin

{Prec: 1<=a<=b<=N }

i := a ;

j := i ;

{Loop Inv: X[i] largest in X[a..j]}

while j<=b do begin

if X[j]>X[i] then i := j ; { COUNT ME }

j := j + 1

end ;

temp := X[a] ;

X[a] := X[i] ;

X[i] := temp

end ;

Calling the procedure twice, we can find the second largest in the array
X[1..n]:

function Slow : integer ;

begin

FindLarge(1,N) ;

FindLarge(2,N) ;

Slow := X[2]

end ;

The line “Count Me” in FindLarge is run:

ksN + ds

times during the execution of Slow, for some ks and ds. Determine the
exact value of ks.

Math 220/317: Programming II/Data Structures 7

6. This problem is a continuation of the previous problem.

The following program also determines the second largest element in
the array X[1..n]. The line “Count Me” in the procedure FindLarge

is run kfN +df times, total for all three calls to FindLarge, during the
execution of Fast. Determine the exact value for kf .

function Fast : integer ;

var half : integer ;

begin

{Prec: N >= 2 }

{Find the largest in each of the two halves of the array}

half := (N div 2) + 1 ;

FindLarge(1, half-1) ;

FindLarge(half, N) ;

{Find the second largest in only one half.}

if X[1]>X[half] then

FindLarge(2, half-1)

else

FindLarge(half+1, N) ;

{Choose the correct among the three.}

if X[1] > X[half] then

if X[2]>X[half] then

Fast := X[2]

else Fast := X[half]

else if X[1] < X[half] then

if X[half+1]>X[1] then

Fast := X[half+1]

else Fast := X[1]

else { X[1]=X[half] }

Fast := X[1]

end ;

