
Burton Rosenberg

Math 220/317: Programming II/Data Structures 1

Midterm Answers Out: 19 October 1993

1. Show that these two program fragments are identical. The variables A
and B are declared as boolean, and S1 and S2 represent two statements.

Program Fragment 1:

if A OR B then

if A then S1

else S2 ;

Program Fragment 2:

if A then S1

else if B then S2 ;

Solution: Transform the first fragment to:

if (A OR B) AND A then S1 ;

if (A OR B) AND (NOT A) then S2;

The absorption identity gives:

(A ∨B) ∧ A = A,

which we can apply to the first if. Note: ∨ is the symbol for OR, ∧ is
the symbol for AND, and ¬ is the symbol for NOT. The law of distribution
gives:

(A ∨B) ∧ (¬A) = (A ∧ ¬A) ∨ (B ∧ ¬A).

The first term of the OR on the right hand side is always false, so
it reduces to only the second term. Therefore, we can transform our
program again:

if A then S1 ;

if (B AND NOT A) then S2;

Math 220/317: Programming II/Data Structures 2

which is the same as:

if A then S1

else if B then S2;

which is Program Fragment Two.

2. Change the following repeat loop into an exactly equivalent while

loop.

{Precondition: N is any integer.}

i := 0 ;

repeat

i := i + 1

until (i*i) > N ;

Solution: The formula is:

repeat S until C ⇔ S; while ¬C do S.

Applying the formula:

i := 0 ;

i := i + 1 ;

while not((i*i)>N) do

i := i + 1 ;

We can neaten this up using simple identities:

i := 1 ;

while (i*i)<=N do

i := i + 1 ;

3. Give code for the procedure

Procedure Concat(A, B : List) ;

Math 220/317: Programming II/Data Structures 3

which given two lists A and B, changes A into their concatenation and
changes B into the empty list. Do this with as efficiently as possible.

Procedure Concat(a, b: list) ;

begin

if b^.first=nil then begin

{there is nothing to do in this case}

end else if a^.first=nil then begin

{b is not empty, a is empty.}

{copy b to a}

a^.first := b^.first ;

a^.last := b^.last ;

{and make b empty}

b^.first := nil ;

b^.last := nil

end else begin

{both a and b are not empty}

{connect the list together}

a^.last^.next := b^.first ;

{update list a}

a^.last := b^.last ;

{and make b empty}

b^.first := nil ;

b^.last := nil

end

end;

But then we notice that the last three lines of the last two cases are
identical, so we can pull them out and put them together:

Procedure Concat(a, b : List) ;

begin

if b^.first<>nil then begin

if a^.first=nil then {a becomes b}

a^.first := b^.first

else {tack on non-empty b to non-empty a}

a^.first^.next := b^.first ;

Math 220/317: Programming II/Data Structures 4

{update a and make b nil}

a^.last := b^.last ;

b^.first := nil ;

b^.last := nil

end

end ;

4. Improve the speed in the inner loop of the following code fragment.

(a) As written, how many multiplications are performed as a function
of N .

(b) Give an identically functioning code fragment where only O (N)
multipilications are performed.

var a : array[1..N,1..N] of integer ;

i, j : integer ;

begin

for i := 1 to N do

for j := i to N do

a[i,j] := i*i ;

end.

Solution: There are,

N + (N − 1) + . . . + 1 = (N + 1)N/2,

multiplcations performed.

It would be best to pull the multiplication out of the inner loop, doing
it one time for all just before the do loop:

for i := 1 to N do begin

k := i*i ;

for j := i to N do

a[i,j] := k

end ;

