
Burton Rosenberg

Math 220/317: Programming II/Data Structures 1

Midterm October 20, 1994.

There are four problems for a total of 100 points. Show all your work, partial
credit will be awarded. When there is not enough room on the test page itself,
write in the provided blue books and write and sign your name on each one.
No notes, no collaboration.

If a problem seems easy: take care!
If a problem seems hard: persevere!

Name:

Problem Credit

1

2

3

4

Total

Math 220/317: Programming II/Data Structures 2

1. Show that these two program fragments are identical. The variables A
and B are booleans whose values are calculated elsewhere in the pro-
gram. S1 and S2 are two statements.

Program Fragment 1:

if A then

if B then S1 ;

if (NOT(A OR B)) then S2 ;

Program Fragment 2:

if (NOT A) then begin

if (NOT B) then S2

else if A then S1

end ;

if (B AND A) then S1 ;

Math 220/317: Programming II/Data Structures 3

2. Change the following repeat loop into an exactly equivalent while

loop.

{Precondition: N is any integer.}

i := 0 ;

repeat

i := i + 1

until (i*i) > N ;

Math 220/317: Programming II/Data Structures 4

3. Write code to split a list into two lists by taking elements alternately
from the original list. The original list ends up empty. That is, just
move pointers, you don’t have to new or dispose. Keep the order of the
elements and assume no dummy headers.

type L_ptr = ^ L_rec ;

L_rec = record

i : integer ;

n : L_ptr ;

end ;

procedure split_list(var in_list : L_ptr ;

var out_list_A : L_ptr ;

var out_list_B : L_ptr) ;

(* you write the code here *)

Here is an example. The symbols such as [x]->[y]->[z] mean list
element containing data x pointing to list element containing data y,
and so on.

Input list: [1]->[7]->[6]->[3]->[9]->[2]

Output list A: [1]->[6]->[9]

Output list B: [7]->[3]->[2]

Be careful, the input list can be any length, including zero!

Math 220/317: Programming II/Data Structures 5

4. Use recursion to compare two lists for equality. Lists are equal when
the nodes contain the same data, in the same order. The data types
are L_ptr and L_rec, as in the previous problem. The function header
is:

function list_compare(a : L_ptr ; b : L_ptr) : boolean ;

(* true if a equals b, and false otherwise.

Recursion equation to employ:

a=b if and only if either

(1) they are both empty

(2) they are both non-empty, a^.i = b^.i

and the lists a^.n and b^.n are equal.

*)

(* you write the code here *)

