
Burt Rosenberg

Math 220/317: Programming II/Data Structures 1

C Syntax Out: 15 September, 1995

• Constants.

– Integer such as 1, 0, 14, 0x0A.

– Characters such as ’A’, ’B’, ’\0’.

– Strings such as "Hello World!\n", "A".

• Variables, such as u, i, u_and_i_are_variables.

• Expressions. Constants and variables are expressions. So are expressions connected together by
operators and using parentheses to group operators. The operators are:

– Arithmetic: +, -, *, /, % and unary - meaning “negative.”

– Assignment: =, +=, -=, *=, &=, |=, ++, --

– Access: access an array element, [], access a structure element, . or ->, call a function, (),
access the target of a pointer, *.

– Logical: ==, !=, <, <=, >, >=, &&, ||, !

– Bitwise: &, |, <<, >>, ~, ^

– Utility: the cast (), the address operator & and the sizeof operator.

Examples: x+1, (x+1), (1+3), x=((y+z)>2)+1, (*x[100]).field, f(1)

• Statements.

– Expressions followed by a semicolon are statements, such as x=y+1;

– Compound Statements: a series of declarations, perhaps none, followed by series of statements,
perhaps none, all enclosed in a pair of curly braces.
Examples: { x=1; y=2; }, {int i; i=1; }, {}, {;}

– The If Statement: if (Expr) Statement
Examples: if (x>y) x=y+1; if ((x+1)==y) { x=1; y=2; }

– The If-Else Statement: if (Expr) Statement else Statement
Examples:

if (x>y) x=y+1; else { x=1; y=2; }
if ((x+1)==y) { x=1; y=2; } else x=y+1;
if (x=(y>1)) x++ ; else y-- ;
if (x==y) { x=2; y=3; } else { x=3; y=2 }
if (x==y) ; else { do_only_me++ }

– The While Statement: while (Expr) Statement
Examples: while (a>0) a-- ; while (++a<100) ;

Math 220/317: Programming II/Data Structures 2

– The For Statement: for (Expr1 ; Expr2 ; Expr3) Statement
Note: This statement is equivalent to Expr1 ; while (Expr2) { Statement Expr3; }
Examples: for(i=0;i<10;i++) a[i]=0 ;

– The Switch Statement: switch (Expr) Compound-Statement, where the Compound State-
ment generally has case-labeled lines: case Expr: Statement, and the special default: Statment.
Example:

switch(string[0])
{

case ’y’: printf("Yes\n") ;
break ;

case ’n’: printf("No\n") ;
break ;

default: printf("string[0] is neither y nor n\n") ;
}

– Other statements include the Break: break;, the Continue: continue;, the Return of two
forms: return with value: return(Expr);, return without value: return;, the Conditional
Evaluation: (Expr1) ? Expr2 : Expr3 ;, and the Null: ;.

• Declarations. These are allowed as the first elements of a compound statement or at the
outermost level of the file (outside of all curly braces). They are of the form: storage-class type
name-list ;.

– Storage-class: extern, static, typedef are the most frequently used.

– Types: char, int and double are the most frequently used, as well as a structure specifier
or a typedef name. Less frequently used are float, unsigned char, unsigned long, and a union
specifier.

– Name-list: a comma separated list of possibly initialized declarators of the following kinds:
identifier, pointer, function or array. Parenthesis are used to nest declarators, forming very
complex types.

∗ identifier: a name.
∗ pointer: * followed by a declarator or name.
∗ function: a declarator or name followed by ()

∗ array: a declarator or name followed by [optional-integer], where the optional integer
constant indicates the size of the array.

– Structure specifier: we come back to talk about these here because they are complicated.
These are of new main forms

∗ To declare new structure type: struct optional-structure-tag { declarations }
The declarations are a sequence of declarations exactly as described by the section, except
that the storage-class tags do not apply.

∗ To recall a defined structure type: stuct structure-tag.

Math 220/317: Programming II/Data Structures 3

– Typedef: The storage class typedef declares a name for a new type. Write the declaration as
if you were defining a variable, however the storage class typedef will assign to the variable
the resulting type, which can then be used in further declarations.

Examples:
int i ; int i, j; int *pntr_i ; int i, *pntr_i ;
double x[100] ; double y, x[100], *pntr ;
char *array_of_10_pntrs_to_char[10] ;
char (*Pntr_to_an_array_of_10_char)[10] ;
struct { int i, j } a_struct, another_struct ;
struct S { int i ; double x ; } Array_of_S[10], *Pntr_to_S ;
struct S yet_another_S_struct, ten_more_such[10] ;
typedef LITTLE_ARRAY[10]; LITTLE_ARRAY i_am_an_array ;

• Function Definition. These are allowed only at the outermost level of the program file. A
function named main is special: there must be one and only one such function for each program.
The syntax is function-declaration(prototype) function-body.

– Function Declaration with prototype: Use the declaration syntax to give the name and return
type of the function, and within the parentheses, give a comma separated list of declarations
giving the name and types of the arguments. The storage class is ignored for arguments, and
only the classes extern and static are generally used for the function itself. In the case of
functions “static” means a function private to the current file and “extern” means a function
whose name is exported to other files in a project.

– Function Body: A compound statement.

Examples:

int f(int i) { return(i) ; }
int g(int a[], int n)
{
int j, sum ;
sum = 0 ;
for (j=0;j<n;j++) sum+= a[j] ;
return(sum) ;

}
char * h(char * s)
{

while (*s!=\’0’)
{
if (*s==’,’) break ;
s++ ;

}
return(s) ; /* a pointer to a character, not *s! */

}

Math 220/317: Programming II/Data Structures 4

• Preprocessor.

– #include: Read in text from the named file. If enclosed in double quotes, the file name is
used exactly. If enclosed in pointy brackets, the include file is looked for in the location of
system wide include files. The preprocessor is not the compiler — an ending semicolon is not
used.
Examples:
#include<stdio.h>
#include "myheaderfile.h"

– #define: Makes the first word that follows an alias for the rest of the line. Macros are also
created using define.
Examples:
#define PI 3.14159
#define TRUE 0==0

– Conditional Compilation: These controls are used for making C code that compiles on many
different platforms, using code pieces that adapt to the system’s configuration. I mention them
here because they are useful for “commenting out” large blocks of code when debugging. In
C, comments of the /* */ type cannot be nested. Instead, use:

#if 0
The compiler will skip over
all of this because what
follows the #if is value 0.
The compiler begins again
after the #endif ...

#endif

