
Burt Rosenberg

Math 220/317: Programming II/Data Structures 1

Problem Set 2 Out: 5 September, 1995

Due: 12 September, 1995

Reading Assignment

Chapters 6, 7, 8, 11, 12 and 16 in the cow book.

Programming Assignment

1. Write a function that duplicates a list. It need not maintain the orignal order of elements on the
list.

2. Improve upon (1) to duplicate a list while maintaining the original order of elements.

3. Write a function that finds, prints and deletes the minimum integer on a list.

4. Use (3) to print a list in ascending order, deleting the list as you go.

Example Programs

% cat test3.c
#include<stdio.h> /* include standard IO libraries */
#include<stdlib.h> /* ANSI C, needed for malloc */

/* test3.c
Burt Rosenberg
Mth 220, Fall 1995

*/

struct MyList { /* MyList is the structure tag */
int the_number ; /* an integer field, called the_number*/
struct MyList *next ; /* a pointer to another struct MyList */

} ;

struct MyList *anchor ; /* make a place for a pointer to a struct */
struct MyList *l_tmp ; /* a temporary pointer to structure,

because we don’t yet know about making
variables local to functions */

/* functions to be defined later */
struct MyList *push_MyList(int i, struct MyList *l) ;
void print_MyList(struct MyList *l) ;

Math 220/317: Programming II/Data Structures 2

main() {
anchor = NULL ; /* initialize to an empty list */
/* add 11, 7 and 3 to the front of the list */
anchor = push_MyList(11, anchor) ;
anchor = push_MyList(7, anchor) ;
anchor = push_MyList(3, anchor) ;
/* print the list */
print_MyList(anchor) ;

}

/* push_MyList:
takes an integer and a list and adds a new
element, containing the integer, to the head
of the list. Returns the new head of the list.

*/
struct MyList *push_MyList(int i, struct MyList *l) {
/* first, create the structure */
l_tmp = (struct MyList *) malloc(sizeof(struct MyList)) ;
/* sizeof tells malloc how large, (struct MyList *) casts

the type */
(*l_tmp).the_number = i ; /* fill in field with number */
/* this can also be written l_tmp->the_number = i */
(*l_tmp).next = l ; /* fill in field with list pointer */
/* this can also be written l_tmp->next = l */
return(l_tmp) ; /* return the head of new list */

}

/* print_MyList:
prints the MyList

*/
void print_MyList(struct MyList *l) {

while(l!=NULL) { /* while not done ... */
printf("%d ", (*l).the_number) ; /* print the_number field */
l = (*l).next ; /* then move to next struct */
/* NOTE: the caller’s argument is not changed, l is local */

}
printf("\n") ;

}
% cc test3.c
% a.out
3 7 11
%

