
Burt Rosenberg

Math 220/317: Programming II/Data Structures 1

Problem Set 6 Out: 31 October, 1995

Due: 14 November, 1995

Quicksort

Write a quicksort subroutine. Your main routine should call quicksort with the
array of integers to sort and the integer size of the array. Quicksort returns with
the array sorted in ascending order. The main generates some test data, prints
the array before the sort, calls the sort, then prints the array after the sort.

The heart of quicksort is the partitioning of a section of the array into
numbers smaller than or equal to the pivot and numbers larger than the pivot.
To make life easier, let us divide the work of partitioning into a separate pivot
selection routine and a split routine. The split routine assumes that the pivot
has been placed in the zeroth location of the region it is to partition. At first,
the pivot selection routine does nothing. Once the more difficult split routine
is working, go back and improve the pivot selection routine to use the median-
of-three heuristic.

The split routine takes an array and two integer indices, assumes that the
pivot is positioned at the bottom of the region to split, and returns an integer
index indicating where the pivot element ended up after the split:

int split(int A[], int bottom, int top)
{

/* Split A[bottom..top] at the pivot = A[bottom]. That is,
originally the pivot is placed in the bottom location.
Return the pivot position after the split. */
...
return(where_the_pivot_is_now) ;

}

The split routine is tricky, and you should use the following loop invariant to
guide you:

Integers i and j are such that bottom ≤ i ≤ j ≤ top, and for any
integer k between bottom and i, A[k] ≤ pivot, and for any integer k
between k + 1 and top, A[k] > pivot.

You should ask yourself the following questions:

1. To what values will i and j set set initially to make the loop invariant
true.

2. What relationship between i and j imply loop termination.

3. How do I move towards termination? Precisely, how is the loop invariant
reestablished each time before the bottom of the loop. (Hint: If i and j

Math 220/317: Programming II/Data Structures 2

both defy the invariant, then swapping the values in A[i] and A[j] will
fix this.)

Notes on Big-Oh

To talk easily and precisely about the efficiency of algorithms, when we are less
interested in the constant factors than we are in how the algorithm performs
for large data sets, we use the Big-Oh notation. We say that insertion and
selection sorts are O(n2), “Big-Oh of n-squared,” and merge and quick sort are
O(n log n), “Big-Oh of n-log-n.”

A function f on the positive integers is “Big-Oh” of another function g,
f = O(g), if there exists an integer N and a constant C such that,

|f(n)| < C|g(n)|, for all N < n.

The choice of the constant C lets us group together functions which differ only
by constant factors, and the choice of N lets us neglect perhaps bad behavior
of the algorithm on small problem sizes.

Insertion sort is O(n2), so that given any machine, and any programmer,
there is a C and an N such that whenever you sort n numbers, n > N , using this
programmer’s code on the specified machine, it will take less than Cn2 seconds.
Merge sort is O(n log n), so that given any machine, and any programmer, there
is a C ′ and an N ′ such that whenever you sort n numbers, n > N ′, using that
programmer’s code on the specified machine, it will take less than C ′n log n
seconds. But, insertion sort is not O(n log n), that is, no matter how big you
choose C, for large enough n the sort will take more than Cn log n seconds.

There are some rules for using Big-Oh notation:

1. If f = O(g) and g = O(h) then f = O(h). This is called transitivity.

2. If f1 = O(g) and f2 = O(g), and A and B are constants, then Af1+Bf2 =
O(g). Hence the collection of all O(g) functions forms a vector space.

3. It is possible that f = O(g) while g 6= O(f) — in fact, this is often the
case. An example has already been given.

4. If f = O(g) then O(f +g) = O(g) — adding a “small” function to a “big”
function won’t change the big function’s size.

