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Test 1 Answers Februrary 24, 5:00–6:15

The four problems were graded as follows:

1. 5 points.

2. (a) 2 points.

(b) 1 point.

(c) 2 points.

3. (a) 2 points for Li, 2 points with for Pi.

(b) 1 point.

4. ⇒ 3 points.

⇐ 2 points.
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1. [Simplex Method]

Solve the Following LP showing step-by-step the simplex method:

max x1 + 2x2 + x3

s.t. x1 + x2 + x3 ≤ 2
x1 + x2 ≤ 1

x1, x2, x3 ≥ 0

Introduce slack variables:

x4 = 2− x1 + x2 + x3

x5 = 1− x1 − x2

z = x1 + 2x2 + x3

The initial basis is {x4 = 2, x5 = 1}. We pivot x2 into the basis, and
x5 out:

x2 = 1− x1 − x+ 3

x4 = 1− x3 + x5

z = 2− x1 + x3 − 2x5

Now pivot x3 in and x4 out:

x2 = 1− x1 − x5

x3 = 1− x4 + x5

z = 3− x1 − x4 − 2x5

The coefficients of z are all negative. Hence the optimal solution is
x1 = x4 = x5 = 0, x2 = x3 = 1 and it has cost 3.
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2. [Duality]

(a) Give the Dual of the previous LP problem.

(b) Find the optimal dual solution, using whatever method you wish.

(c) Demonstrate the Complementary Slackness conditions for your
optimal dual/primal solution pair. That is, what should be true
and what is true for each of the 5 variable-inequality pairings.

The dual is:
minimize 2y1 + y2

subject to:

y1 + y2 ≥ 1

y1 + y2 ≥ 2

y1 ≥ 1

and y1, y2 ≥ 0. Two of the inequalities are redundant.

The solution y1 = y2 = 1 is feasible and has a cost equal to the optimal
primal solution. Hence this is the optimal dual solution.

Here are the five complementary slackness conditions:

(a) y1 + y2 > 1 ⇒ x1 = 0.

(b) x2 6= 0 ⇒ y1 + y2 = 2.

(c) x3 6= 0 ⇒ y1 = 1.

(d) y1 6= 0 ⇒ x1 + x2 + x3 = 2.

(e) y2 6= 0 ⇒ x1 + x2 = 1.

where the first three come from the primal variables, the last two come
from the dual variables. The equalities are all satisfied.
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3. [LU Decomposition]

(a) Use Gaussian Elimination with partial pivoting to decompose,

A =

 1 1 1
2 0 2
0 3 3

 ,
into the product,

L3P3L2P2L1P1A = U,

where Li are column i eta-matrices, Pi are permutation matrices,
and U is upper triangular with 1’s down the diagonal.

(b) Use back substitution and your decomposition to find x1, x2, x3

real numbers which satisfy,

x1 + x2 + x3 = 1
x1 + x3 = 1/2

x2 + x3 = 1/3

P1 =

 0 1 0
1 0 0
0 0 1

 L1 =

 1/2 0 0
−1/2 1 0

0 0 1


P2 =

 1 0 0
0 0 1
0 1 0

 L2 =

 1 0 0
0 1/3 0
0 −1/3 1


P3 =

 1 0 0
0 1 0
0 0 1

 L3 =

 1 0 0
0 1 0
0 0 −1


U =

 1 0 1
0 1 1
0 0 1


Part (b) seeks x such that Ax = [1, 1, 1] (a column vector of 1’s). First
calculate:

L3P3L2P2L1P1

 1
1
1

 = L3P3L2P2

 1/2
1/2
1


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= L3P3L2

 1/2
1

1/2



= L3P3

 1/2
1/3
1/6



=

 1/2
1/3
−1/6


Then back substitute:

Ux =

 1 0 1
0 1 1
0 0 1

x =

 1/2
1/3
−1/6


giving,

x =

 2/3
1/2
−1/6

 .
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4. [Theory]

Prove that the product AB of two square matrices is nonsingular if and
only if both A and B are nonsingular.

Suppose A and B are nonsingular. By Theorem 6.2, a matrix is non-
singular if and only if there exists an inverse. In our case, there exist
A−1 and B−1 such that,

AA−1 = A−1A = B−1B = B−1B = I.

Then,

AB(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I,

and,

(B−1A−1)AB = B−1(A−1A)B = B−1IB = B−1B = I.

So AB has an inverse, namely B−1A−1, and is therefore nonsingular.

Now suppose that AB is nonsingular. By Theorem 6.1, a square matrix
has two possibilities only: it is nonsingular and each equation Ax = b
has a unique solution for x, or it is singular and the equation Ax = b has
either no or an infinity of solutions, depending on the b. It is enough to
show that Ax = 0 and Bx = 0 have unique solutions. Because Ax = 0
has a solution, x = 0, if it is singular it must have an infinity of solutions
Ax = 0. If it has only one solution, than it must be nonsingular. The
same goes for B.

Suppose Bx1 = Bx2 = 0. Then ABx1 = ABx2 = 0 so x1 = x2 = 0.
Thus B is nonsingular. If Ax1 = Ax2 = 0, then since B is non-singular,
there are unique solutions to Byi = xi, with i = 1, 2. Hence AByi = 0
and thus y1 = y2, and x1 = By1 = By2 = x2. So A is nonsingular.


