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Test 1 Answers FEBRURARY 24, 5:00-6:15

The four problems were graded as follows:

1. 5 points.

2. (a) 2 points.
(b) 1 point.
(c) 2 points.

3. (a) 2 points for L;, 2 points with for P;.
(b) 1 point.

4. = 3 points.

< 2 points.
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1. [SIMPLEX METHOD]

Solve the Following LP showing step-by-step the simplex method:

max T + 21’2 + x3

s.t. Ty + X2 + x3
T+ X

IAINA

Ty, X2, Zs3 Z 0

Introduce slack variables:

Ty = 2—$1+$2+$3
Ty = 1—1'1—1'2
z = x1+21:2+x3

The initial basis is {x4 = 2,25 = 1}. We pivot x5 into the basis, and
Ts out:

Lo = 1—21—2+3
rs = 1—x3+ x5

z = 2—x1+ 23— 275

Now pivot x3 in and x4 out:

o = 1—1‘1—1'5
r3 = 1—.T4+JI5
z = 3—x1— T4 — 225

The coefficients of z are all negative. Hence the optimal solution is
r1 =24 =25 = 0,29 = x3 = 1 and it has cost 3.
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2. [DuALITY]

(a) Give the Dual of the previous LP problem.
(b) Find the optimal dual solution, using whatever method you wish.

(c) Demonstrate the Complementary Slackness conditions for your
optimal dual/primal solution pair. That is, what should be true
and what is true for each of the 5 variable-inequality pairings.

The dual is:
minimize 2y, + Yo
subject to:
Y1 +Yy2 2
ity = 2
vy

and y1,y2 > 0. Two of the inequalities are redundant.

The solution y; = yo = 1 is feasible and has a cost equal to the optimal
primal solution. Hence this is the optimal dual solution.

Here are the five complementary slackness conditions:

(a)

(b) 2o A0 = 1y +y2=2.

(c) z3#0 = y; =1

(d) 11740 = @z +x9+23=2.
(€) Y2 #£#0 = 1+ 1z =1.

where the first three come from the primal variables, the last two come
from the dual variables. The equalities are all satisfied.
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3. [LU DECOMPOSITION]

(a) Use Gaussian Elimination with partial pivoting to decompose,

111
A=120 2|,
03 3

into the product,

L3P3LoP L1 PLA=U,
where L; are column ¢ eta-matrices, P; are permutation matrices,
and U is upper triangular with 1’s down the diagonal.

(b) Use back substitution and your decomposition to find x1, xs, z3
real numbers which satisfy,

Ty + T2 + T3 = 1
T + I3 = 1/2
T2 + T3 = 1/3

010 1/2 0 0
P=|100] Li=|-1/21 0
|0 0 1] 0 0 1)
[1 0 0] 1 0 0]
PB=|001| La=|0 1/3 0
01 0 0 —1/3 1|
[1 0 0] 1 0 O
Ps=1010 Ly=101 0
00 1 00 —1
1 01
U=]1011
0 01
Part (b) seeks z such that Az = [1,1, 1] (a column vector of 1’s). First
calculate:
1 1/2
L3PsLoPo 4Py | 1 = L3P3LoP | 1/2

1 1
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== L3P3L2

1/2
1

1/2 ]
1/2
1/3
|
1/2
1/3

)

01 1/2
]{ 1/3]
01 ~1/6

2/3
r=1| 1/2 |.
)

= L3P3

Then back substitute:

1
Uz=10
0

giving,
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4. [THEORY]

Prove that the product AB of two square matrices is nonsingular if and
only if both A and B are nonsingular.

Suppose A and B are nonsingular. By Theorem 6.2, a matrix is non-
singular if and only if there exists an inverse. In our case, there exist

A~! and B~! such that,
AA'=A'"A=B'B=B"'B=1.
Then,
AB(B'A™Y)Y = A(BB YA ' = ATA = AA =1,
and,
(B'AYWAB=BYA1'A)B=B"'IB=B"'B=1.

So AB has an inverse, namely B~1A™!, and is therefore nonsingular.

Now suppose that AB is nonsingular. By Theorem 6.1, a square matrix
has two possibilities only: it is nonsingular and each equation Az = b
has a unique solution for z, or it is singular and the equation Az = b has
either no or an infinity of solutions, depending on the b. It is enough to
show that Az = 0 and Bx = 0 have unique solutions. Because Az = 0
has a solution, z = 0, if it is singular it must have an infinity of solutions
Axz = 0. If it has only one solution, than it must be nonsingular. The
same goes for B.

Suppose Bx; = Bxy = 0. Then ABx; = ABxy = 0 s0 1 = x5 = 0.
Thus B is nonsingular. If Ary = Azs = 0, then since B is non-singular,
there are unique solutions to By; = z;, with ¢ = 1,2. Hence ABy; = 0
and thus y; = yo, and 1 = By; = Bys = x3. So A is nonsingular.



