Burton Rosenberg

Test 1 Answers
 Februrary 24, 5:00-6:15

The four problems were graded as follows:

1. 5 points.
2. (a) 2 points.
(b) 1 point.
(c) 2 points.
3. (a) 2 points for $L_{i}, 2$ points with for P_{i}.
(b) 1 point.
4. $\Rightarrow 3$ points.
$\Leftarrow 2$ points.
5. [Simplex Method]

Solve the Following LP showing step-by-step the simplex method:

$$
\begin{array}{ll}
\max & x_{1}+2 x_{2}+x_{3} \\
& \\
\text { s.t. } & x_{1}+x_{2}+x_{3} \leq 2 \\
& x_{1}+x_{2} \\
& \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

Introduce slack variables:

$$
\begin{aligned}
x_{4} & =2-x_{1}+x_{2}+x_{3} \\
x_{5} & =1-x_{1}-x_{2} \\
z & =x_{1}+2 x_{2}+x_{3}
\end{aligned}
$$

The initial basis is $\left\{x_{4}=2, x_{5}=1\right\}$. We pivot x_{2} into the basis, and x_{5} out:

$$
\begin{aligned}
x_{2} & =1-x_{1}-x+3 \\
x_{4} & =1-x_{3}+x_{5} \\
z & =2-x_{1}+x_{3}-2 x_{5}
\end{aligned}
$$

Now pivot x_{3} in and x_{4} out:

$$
\begin{aligned}
x_{2} & =1-x_{1}-x_{5} \\
x_{3} & =1-x_{4}+x_{5} \\
z & =3-x_{1}-x_{4}-2 x_{5}
\end{aligned}
$$

The coefficients of z are all negative. Hence the optimal solution is $x_{1}=x_{4}=x_{5}=0, x_{2}=x_{3}=1$ and it has cost 3 .
2. [Duality]
(a) Give the Dual of the previous LP problem.
(b) Find the optimal dual solution, using whatever method you wish.
(c) Demonstrate the Complementary Slackness conditions for your optimal dual/primal solution pair. That is, what should be true and what is true for each of the 5 variable-inequality pairings.

The dual is:

$$
\operatorname{minimize} 2 y_{1}+y_{2}
$$

subject to:

$$
\begin{aligned}
y_{1}+y_{2} & \geq 1 \\
y_{1}+y_{2} & \geq 2 \\
y_{1} & \geq 1
\end{aligned}
$$

and $y_{1}, y_{2} \geq 0$. Two of the inequalities are redundant.
The solution $y_{1}=y_{2}=1$ is feasible and has a cost equal to the optimal primal solution. Hence this is the optimal dual solution.
Here are the five complementary slackness conditions:
(a) $y_{1}+y_{2}>1 \Rightarrow x_{1}=0$.
(b) $x_{2} \neq 0 \Rightarrow y_{1}+y_{2}=2$.
(c) $x_{3} \neq 0 \Rightarrow y_{1}=1$.
(d) $y_{1} \neq 0 \Rightarrow x_{1}+x_{2}+x_{3}=2$.
(e) $y_{2} \neq 0 \Rightarrow x_{1}+x_{2}=1$.
where the first three come from the primal variables, the last two come from the dual variables. The equalities are all satisfied.

3. [LU Decomposition]

(a) Use Gaussian Elimination with partial pivoting to decompose,

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 0 & 2 \\
0 & 3 & 3
\end{array}\right]
$$

into the product,

$$
L_{3} P_{3} L_{2} P_{2} L_{1} P_{1} A=U,
$$

where L_{i} are column i eta-matrices, P_{i} are permutation matrices, and U is upper triangular with 1's down the diagonal.
(b) Use back substitution and your decomposition to find x_{1}, x_{2}, x_{3} real numbers which satisfy,

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=1 \\
& x_{1} \quad+x_{3}=1 / 2 \\
& x_{2}+x_{3}=1 / 3
\end{aligned}
$$

$$
\begin{array}{ll}
P_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] & L_{1}=\left[\begin{array}{ccc}
1 / 2 & 0 & 0 \\
-1 / 2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
P_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] & L_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / 3 & 0 \\
0 & -1 / 3 & 1
\end{array}\right] \\
P_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] & L_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right] \\
U=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] &
\end{array}
$$

Part (b) seeks x such that $A x=[1,1,1]$ (a column vector of 1 's). First calculate:

$$
L_{3} P_{3} L_{2} P_{2} L_{1} P_{1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=L_{3} P_{3} L_{2} P_{2}\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
1
\end{array}\right]
$$

$$
\begin{aligned}
& =L_{3} P_{3} L_{2}\left[\begin{array}{c}
1 / 2 \\
1 \\
1 / 2
\end{array}\right] \\
& =L_{3} P_{3}\left[\begin{array}{c}
1 / 2 \\
1 / 3 \\
1 / 6
\end{array}\right] \\
& =\left[\begin{array}{c}
1 / 2 \\
1 / 3 \\
-1 / 6
\end{array}\right]
\end{aligned}
$$

Then back substitute:

$$
U x=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] x=\left[\begin{array}{c}
1 / 2 \\
1 / 3 \\
-1 / 6
\end{array}\right]
$$

giving,

$$
x=\left[\begin{array}{c}
2 / 3 \\
1 / 2 \\
-1 / 6
\end{array}\right] .
$$

4. [Theory]

Prove that the product $A B$ of two square matrices is nonsingular if and only if both A and B are nonsingular.

Suppose A and B are nonsingular. By Theorem 6.2, a matrix is nonsingular if and only if there exists an inverse. In our case, there exist A^{-1} and B^{-1} such that,

$$
A A^{-1}=A^{-1} A=B^{-1} B=B^{-1} B=I
$$

Then,

$$
A B\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A I A^{-1}=A A^{-1}=I
$$

and,

$$
\left(B^{-1} A^{-1}\right) A B=B^{-1}\left(A^{-1} A\right) B=B^{-1} I B=B^{-1} B=I .
$$

So $A B$ has an inverse, namely $B^{-1} A^{-1}$, and is therefore nonsingular.
Now suppose that $A B$ is nonsingular. By Theorem 6.1, a square matrix has two possibilities only: it is nonsingular and each equation $A x=b$ has a unique solution for x, or it is singular and the equation $A x=b$ has either no or an infinity of solutions, depending on the b. It is enough to show that $A x=0$ and $B x=0$ have unique solutions. Because $A x=0$ has a solution, $x=0$, if it is singular it must have an infinity of solutions $A x=0$. If it has only one solution, than it must be nonsingular. The same goes for B.
Suppose $B x_{1}=B x_{2}=0$. Then $A B x_{1}=A B x_{2}=0$ so $x_{1}=x_{2}=0$. Thus B is nonsingular. If $A x_{1}=A x_{2}=0$, then since B is non-singular, there are unique solutions to $B y_{i}=x_{i}$, with $i=1,2$. Hence $A B y_{i}=0$ and thus $y_{1}=y_{2}$, and $x_{1}=B y_{1}=B y_{2}=x_{2}$. So A is nonsingular.

