Burton Rosenberg

There are four problems each counting equally.
Name:

Problem	Credit
1	
2	
3	
4	
Total	

On my honor, I have neither given nor received aid on this examination-assignment.

Signature: \qquad

1. [Simplex Method]

Solve the Following LP showing step-by-step the simplex method:

$$
\begin{array}{ll}
\max & x_{1}+2 x_{2}+x_{3} \\
& \\
\text { s.t. } & x_{1}+x_{2}+x_{3} \leq 2 \\
& x_{1}+x_{2} \\
& \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

2. [DUALITY]
(a) Give the Dual of the previous LP problem.
(b) Find the optimal dual solution, using whatever method you wish.
(c) Demonstrate the Complementary Slackness conditions for your optimal dual/primal solution pair. That is, what should be true and what is true for each of the 5 variable-inequality pairings.

3. [LU Decomposition]

(a) Use Gaussian Elimination with partial pivoting to decompose,

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 0 & 2 \\
0 & 3 & 3
\end{array}\right]
$$

into the product,

$$
L_{3} P_{3} L_{2} P_{2} L_{1} P_{1} A=U,
$$

where L_{i} are column i eta-matrices, P_{i} are permutation matrices, and U is upper triangular with 1's down the diagonal.
(b) Use back substitution and your decomposition to find x_{1}, x_{2}, x_{3} real numbers which satisfy,

$$
\begin{aligned}
x_{1}+x_{2} & +x_{3} \\
x_{1} & =1 \\
& +x_{3}=1 / 2 \\
x_{2} & +x_{3}=1 / 3
\end{aligned}
$$

Math 540 T: Algorithm Design and Analysis
4. [THEORY]

Prove that the product $A B$ of two square matrices is nonsingular if and only if both A and B are nonsingular.

