
Math 596: Operating Systems 1

Notes on Processes Date: 2 February, 1993

Overview:

Idle Process
Location NK ⇒

User Process N-1
Location (N − 1)K ⇒

.

.

.

User Process 2
Location 2K ⇒

User Process 1
Location K ⇒

OS Kernel
Location 0⇒

Clock −→ Interrupt
=⇒ Interrupt CPU

Disk −→ Controller

Math 596: Operating Systems 2

Process Anatomy:

Stack Segment (Base) ⇒
(Bottom of Stack) Stack

Stack Pointer (Offset) ⇒ ⇓
(Top of Stack)

Free
Space

.

⇑

Data
Data Segment (Base) ⇒

Instruction Pointer (Offset) ⇒ Program

Instruction Segment (Base) ⇒

Process Control
Block (PCB)

Process Control Block:

Each process has a Process Control Block, PCB, which maintains important
information about the process including the state it was in when interrupted
by the operating system.

1. Internal CPU Registers:

• Accumulator.

• CPU Flags and Status registers.

• Other general purpose registers, E.g. B, C, D, E.

Math 596: Operating Systems 3

• Instruction Segment and Instruction Pointer registers.

• Data Segment register.

• Stack Segment and Stack Pointer registers.

2. Process Flags:

• Empty PCB

• Ready

• Blocked

• Executing

3. Semaphore Data Structures: a link to the next blocked process, if this
process is blocked.

The Kernel Anatomy:

Data

IH(M) ⇒
. . . Interrupt

IH(1) ⇒ Handlers

Operating
System

IH(0) ⇒ Boot
IH(M)

.
Interrupt .

Vector IH(2)
IH(1)

Absolute Location 0 IH(0)

Math 596: Operating Systems 4

Semaphore Implementation:

1. Data Structures:

(a) Process : In each PCB is a pointer SemaphoreChain. These are
used to form a queue of processes waiting on semaphores.

(b) Kernel : For each semaphore, there is a record containing:

i. the value of the semaphore, Semaphore[i].value,

ii. head and tail pointers to a queue of processes waiting on the
semaphore, Semaphore[i].head and Semaphore[i].tail.

2. Code:

(a) P[i]: When a process does a P on semaphore i, the kernel is
invoked. The value i is checked for validity and, if OK, inter-
rupts are disabled. What happens next depends on the value of
Semaphore[i].value.

• If it is not zero: it is decremented, interrupts are re-enabled
and control returns to the caller.

• If it is zero: the calling process is added to the end of a
queue of processes waiting on the semaphore. For a non empty
queue, Semaphore[i].head is not nil, this is done as follows:

Semaphore[i].tail^.SemaphoreChain = caller’s PCB

Semaphore[i].tail = caller’s PCB

Semaphore[i].tail^.SemaphoreChain = nil

How this is done if Semaphore[i].head is nil is left to the reader.
The process is placed in the “blocked” state and interrupts are
re-enabled.

(b) V[i]: When a process does a V on semaphore i, the kernel is
invoked. The value i is checked for validity and, if OK, interrupts
are disabled. What happens next depends on whether there are
blocked processes on Semaphore i.

• If Semaphore.value is not zero or if Semaphore[i].head is nil,
Semaphore.value is incremented, interrupts are re-enabled and
control is returned to the caller.

Math 596: Operating Systems 5

• Else, there are blocked processes on the semaphore. The first
process on the queue is removed and unblocked:

Semaphore[i].head^.BlockFlag is cleared

Semaphore[i].head =

Semaphore[i].head^.SemaphoreChain

Interrupts are re-enabled and control is returned to the caller.

Interrupt Handshaking

B
B
BB �

�
��

Interrupt Request

B
B
BB �

�
��

Interrupt Acknowledge

B
B
BB �

�
��

�
�
�� B

B
BB

Data

Interrupt Processing

There are three pairs of Interrupt Request (IR), Interrupt Acknowledge (IA)
lines which use the handshaking diagramed above. They are between the
Disk Device and the Interrupt Controller, between the Clock Device and
the Interrupt Controller and between the Interrupt Controller and the CPU.
Between the Controller and the CPU there are also Data lines. These lines
inform the CPU which of the two devices caused the interrupt. We give an
example of the Disk Device requesting an interrupt.

1. The Disk asserts the IR between it and the Controller.

2. The Controller sees the IR asserted and in turn asserts the IR between
it and the CPU. If the Controller is already in the middle of a handshake

Math 596: Operating Systems 6

with the CPU, perhaps the Clock asserted its IR just a moment earlier,
the Disk’s request is held pending.

3. If the CPU has interrupts enabled, it responds to the Controller by
asserting the IA. If interrupts are not enabled, the handshake stalls at
this point.

4. The controller sees that the CPU has asserted IA and chooses between
the Disk and Clock using, for instance, Dekker’s algorithm. Suppose
Disk is chosen. A code for Disk is placed on the Data lines and IR is
released.

5. The CPU sees the release of the IR, reads the Data and then releases
the IA.

6. The CPU disables interrupts and uses the Data to index the Interrupt
Vector.

7. At this point, the handshake between the CPU and Controller is com-
pleted. The Controller can assert the IR any time after the IA returns
high.

8. However, the Disk has not been informed that its interrupt is being
serviced. Any time after the Controller asserts the IA between itself
and the CPU, it asserts the IA between itself and the Disk.

9. The Disk sees the IA asserted and releases its IR.

10. The Controller sees the Disk’s IR released and releases the IA. This
completes the handshake between the Disk and the Controller. The
Disk can interrupt again any time after it sees the IA return high.

Scheduling and Disk Access

The processes are scheduled round robin. Then can be found in one of three
states: Executing, Ready or Blocked. The PCB will be marked Empty when
there is no process residing at that memory address.

Time-slicing is accomplished by attaching the scheduler to the Clock De-
vice’s interrupt handler. When the clock interrupts, the scheduler fills in the

Math 596: Operating Systems 7

PCB of the currently executing process and selects a new process for execu-
tion. It can do this by simply marching through all PCB’s looking for one
marked “Ready”. It unloads the information from the selected PCB into the
CPU, re-enables interrupts and launches the new process.

To communicate with the Disk, there are two semaphores:

1. DiskResource: to gain access to the disk. It is initialized to 1.

2. DiskWait: to wait for completion of the disk operation. It is initialized
to 0.

A process wanting the disk must first acquire it by means of P(DiskResource).
Once access is gained, the process begins the disk transfer. The process will
wait for an interrupt from the Disk Device before continuing. It performs
a P(DiskWait) and is suspended. When the Disk Device interrupts, its in-
terrupt handler copies important information to a buffer and performs a
V(DiskWait). When the requesting process continues, it finishes the transfer
and then releases control of the disk via V(DiskResource).

If a process begins the disk operation and is interrupted by the clock, it
could happen the the disk operation completes before the process is resumed.
In which case the V(DiskWait) by the interrupt handler will occur before the
P(DiskWait) of the disk process. However, the interrupt will not be lost: the
P(DiskWait) will decrement DiskWait from 1 to 0 and will not block.

