
Math 596: Operating Systems 1

Optimal Paging

Burt Rosenberg
University of Miami

Introduction and definitions

Page replacement strategies are responsible for the movement of pages be-
tween disk and memory. Let P be the set of pages in the virtual memory.
They represent fixed sized blocks of contiguous addresses in the virtual ad-
dress space. As the program runs, it will call upon addresses in its virtual
memory. The computer will keep a sequence of working sets in memory in
order to match the requirements of the program. That is, so that the page
containing the address the program requires is in the working set. If the
required page is not in the working set, a page fault occurs and computation
is halted until the page is brought into the working set. Typically, this means
some other page must leave the working set.

We model this with two sequences. The page sequence is a finite string,

P = p1, p2, . . . , pn, where for all i, pi ∈ P .

As the program runs, it references virtual addresses according to the page
sequence. The paging strategy is a finite string of working sets,

W = W1,W2, . . . ,Wn, where for all i, Wi ⊂ P ,

such that |Wi| ≤ k, because core memory is limited, and Wi and Wi+1 differ
by “very little.” If a page p appears in Wi but not in Wi+1, page p is said to
have been paged out at time i. If a page p appears in Wi+1 but not in Wi, page
p is said to have been paged in at time i. In each step of the computation
we will allow one page in and one page out. The paging cost is the number
of page ins in the paging strategy.

Remark: We are counting paging cost as if page outs are free. In reality,
page outs are free if the page has not be modified, else they cost the same
as page ins. It is interesting to consider whether counting this cost gives
different conclusions.

Math 596: Operating Systems 2

It has been claimed that an optimal paging strategy is to page in only at
the moment a page is actually needed (to wait for a page fault) and to page
out the page whose first reuse is the farthest in the future, [1, 3, 5, 7]. The
first rule is called demand paging. In this paper, we give the name farthest
out to the second rule.

The supposition of demand paging means that the sequence of working
sets begins with W1 = { p1 }. At first, only page-in’s occur and the working
sets grow in size until the reach their maximum allowed size k. After which,
either Wi−1 = Wi or pi 6∈ Wi−1 in which case Wi differs from Wi−1 in this
manner: pi is paged-in at time i and for some p ∈ Wi−1, p is paged-out.

The first reuse of a page p ∈ Wi, denoted ρ(p, i), is defined as,

ρ(p, i) = min {j > i | pj = p}.

If the set is empty, we will let ρ(p, i) = ∞. Formally stated, the rule of
farthest out states that the page to throw out of Wi is the one among all
p ∈ Wi maximizing ρ(p, i).

Farthest out is best

Assume we are given a demand paged paging strategy W for a page sequence
P . If W is not farthest out, let i by the smallest integer such that Wi breaks
the farthest out rule. That is, a, b ∈ Wi−1, and ρ(b, i − 1) > ρ(a, i − 1),
however a is paged out at time i.

We modify paging strategy W by replacing the page out of a by that of
b, transforming W it into a strategy W ′. That is, for all j < i, let W ′

j = Wj,
and,

W ′
i = (Wi \ { b }) ∪ { a }.

We next give directions for the construction of W ′
j when j > i.

The idea is that the sequence W ′ continues by imitating W except in
situations where this is impossible. There are exactly two such situations.
The first is if W requires that b be paged out, the second is if W requires
that a be paged in. It might happen that W simultaneously requires that
b be paged out and a be paged in. As the reader shall see, once page b is
paged out, the two strategies W and W ′ will converge. The role of page a,
however, will change hands during the transformation. We say that a is the
excess page and denote it by x. Here is a summary of the transformation:

Math 596: Operating Systems 3

• If Wj brings in p 6= x and throws out b, then W ′
j brings in p and throws

out x:
p ↘

Wj−1 −→ Wj

↘ b

=⇒
p ↘

W ′
j−1 −→ W ′

j

↘ x

• If Wj brings in x and throws out b the W ′
j does nothing:

x ↘
Wj−1 −→ Wj

↘ b

=⇒ W ′
j−1 −→ W ′

j

• If Wj brings in x and throws out y 6= b, in order that W ′ be demand
paged, we are required to do nothing:

x ↘
Wj−1 −→ Wj

↘ y

=⇒ W ′
j−1 −→ W ′

j

This leaves us with:

W ′
j = (Wj \ { b }) ∪ { y }.

Hence y is the new excess page. We set x equal to y.

The first two cases are terminal in that once invoked, Wj = W ′
j and so we

complete the construction of W ′ by setting Wk = W ′
k for all k > j. The third

case saves us a page-in but is not terminal. Eventually, either a terminal case
will arise or we will hit the page b in the page sequence. At that point we
cash in the saved page-in by throwing out the excess page and paging in b.

Wj−1 −→ Wj =⇒
b ↘

W ′
j−1 −→ W ′

j

↘ x

This sets Wj = W ′
j and hence the construction of W ′ is complete.

The strategy W ′ has no more paging cost than W . It differs from W in
that the first exception to the farthest out rule occurs deeper into the page
sequence. We repeat the transformation to form W ′′, W ′′′, and so on. Since

Math 596: Operating Systems 4

the page sequence is finite, this cannot go on forever, and must stop when
there are no more exceptions to the farthest out rule on which to apply the
transformation. At this point we have a demand paged W ∗ which obeys the
farthest out paging strategy. Since the cost of W ∗ is not more than that of
W , we have shown that no paging strategy is better than farthest out.

Remark: Note that the number of exceptions to the farthest out rule
might remain the same after the transformation. For this reason we resort
to the idea of always “pushing the exception to the right.”

Conclusions

We looked at the classic problem of optimal paging and proved that under
the demand paging strategy, farthest out is optimal. Most important next
question is to show that demand paging is optimal. For this, it is likely that
our model should be broadened. We should not require that every page out
accompany a page in, only that the total number of page ins never exceed
by a constant amount the number of page outs. This is also the most likely
set-up in which to consider the problem of costly page-outs. A modified page
must be written to secondary memory whereas a “clean” page does not. This
considered, farthest out is no longer optimal. Could it be that the following
strategy is optimal:

If page p is the farthest out, and q is the next farthest out, page
out p if p is clean or q is modified. Otherwise page out q.

What does this mean for actually algorithms in light of the fact that
the future is not known. An interesting theorem presented in [5] is that
the optimal algorithm gives the same paging cost when run either forward
or backward over the paging sequence. Therefore, although we can’t know
what to do next, we can know how well or how poorly we are doing it.

The field of paging is quite active with many new papers, [2, 4, 6, 8]. A
new version of the problem deals file servers. Workstations request files from
the servers. The servers might move the files among themselves to that files
tend to be near the users.

Math 596: Operating Systems 5

References

[1] L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer,” IBM Systems Journal, vol. 5, No. 2, pp. 78–101, 1966.

[2] A. Borodin, S. Irani, P. Raghavan, and B. Schieber, “Competitive
paging with locality of reference,” In the Proceedings of the 23ird
Annual ACM Symposium of Theory of Computing, 1991. Pp. 249–
259.

[3] P. J. Denning, “Virtual Memory,” Computing Surveys, vol. 2,
pp. 153–189, Sept. 1970.

[4] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator, “Com-
petitive snoopy caching,” Algorithmica, Vol. 3, No. 1, 1988. Pp. 70–
119.

[5] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evalua-
tion techniques for storage hierarchies,” IBM Systems Journal, vol. 9,
no. 2, pp. 78–117, 1970.

[6] D. D. Sleator, and R. E. Tarjan, “Amortized efficiency of list update
and paging rules,” Communications of the ACM, Vol. 28, Feb. 1985.
Pp. 202–208.

[7] Andrew S. Tanenbaum, Modern Operating Systems, Prentice-Hall,
1992.

[8] N. Young, “Competitive paging as cache-size varies,” In the Proceed-
ings of the Second ACM-SIAM Symposium on Discrete Algorithms,
1991. Pp. 241–250.

