MATH 596/688 U: OPERATING SYSTEMS 1

Answer Set 4 19 APRIL, 1994

Introduction

The assignment is to design a memory management system for user programs.
We are provided by the operating system with a contiguous block of memory,
the heap, and must support user’s requests for allocation and deallocation
of memory from the heap. An allocation request will have a size parameter,
and the memory management software must reserve a contiguous block of
unused memory of this size from the heap. A pointer to the block is returned
to the user. Deallocation calls are accompanied by a pointer to the block to
deallocate. This memory is returned to the heap, meaning that it is available
to be reused in a subsequent allocation request.

Statement of Design Goals
The most important goals are:

e Reliability.

e Speed.

e Economy of memory usage.

To economize on memory usage, we employ the trick of placing our free list
data structures inside the free memory itself. We then try to minimize the
header size of allocated blocks. In fact, we could set for ourselves the goal of
having no header for allocated blocks, but we have decided not to do so for
the following reason.

The type of an array in C does not include its final dimension. Hence
a free cannot tell from the pointer type how much memory to free. It is
possible to include this as part of the calling sequence, but the experienced
applications’ programmer would hide this housekeeping under a layer of data
abstraction anyway. We therefore require a header for all allocated blocks
giving the length of the block, and an additional “in-use” bit used for frag-
ment reclamation.

We will not compactify the heap. Very few languages support compacti-
fication since it requires updating all pointers to items in the heap.

MATH 596/688 U: OPERATING SYSTEMS 2

The requirement of speed gives use the most interesting challenge. We
will use a singly-linked list of free blocks, since this has less overhead than
a doubly linked list. Fragment reclamation will be done during forward
sweeps of the free list only, hence reverse links will not be needed. It is too
expensive to keep free blocks in-order on the free list, hence we will search
for collatable fragments in memory. The compromise reached between speed
and simplicity will be further discussed during the overview of the fragment
reclamation algorithm.

Overview of approach

We assume that the operating system will provide us with the starting ad-
dress and size of the heap, and will make provisions for the initialization of
the memory management software. That is, either the user, the compiler or
the operating system will call our initialization program MemoryManagerInit
before running user code.

The heap will contain free and allocated blocks of memory. The free
blocks are organized in a singly-linked list. Each block begins with a header.
We consider the header of a free block to be inside the block, and the pointer
to the free block’s starting address is also the pointer to the header. The
header of an allocated block will be before the block itself, and the pointer
to the allocated block will point to the first byte after the header.

The last item on the free list will always be the rightmost free block, that
is, the highest addresses in the heap. We will make the convention that this
block is of infinite size, hence the free list is never empty. If the heap is a
finite size, each allocate will guard against overflow by checking the range of
address it wishes to return.

The allocated block header will contain the length of the block (not count-
ing the header) and an in-use bit. The free block header will contain the the
length of the block (including header), some flag bits: in-use, swallowed,
digesting, and a pointer to the next free block header in the free list. The
swallowed and digesting flags relate to the method of fragment reclamation.

We use first-fit to allocate memory. The free list is walked until the first
block is found of size equal or larger than requested. If it is only slightly
larger than requested, the entire block is allocated. There is a minimum
value for the meaning of “slightly larger”, since the resulting unused portion
would not be large enough to hold a free block header.

MATH 596/688 U: OPERATING SYSTEMS 3

To allocate the block we have three cases.

1. If the entire block is to be allocated, it is removed from the free list.
The information from the free block header is reformated and written
into the allocated block header, the pointer advanced to just after the
header, and this pointer is returned to the user.

2. If the block is to be cut and allocated memory will be taken from the
end of this block. In this case the only modification to the free list
and free block header is that the length is updated. An allocated block
header is created and the pointer following the header is returned to
the user.

3. If the block is to be cut and allocated memory will be taken from the
front of this block. The free block header is updated, moved rightwards,
and the previous free block is updated. An allocated block header is
filled out, placed at the front of this block and the pointer to the byte
after the header is returned to the caller.

If the free block to cut is finite, cut from the end of the block. If it is infinite,
cut from the front.

To free a block, we look just before the pointer to find the size of the
allocated block being returned to the free list. The free block header is filled
out, and we place this block at the front of the free list. We do not attempt
to reclaim fragments at this time.

We will only attempt to reclaim, that is, glue together, fragments when
an allocation call fails for lack of memory. We will reclaim and then try the
allocate again. Reclamation will be performed in two forward sweeps over
the linked list of free blocks. The first sweep will glue together free blocks,
the second will delete from the free list blocks which have been “swallowed
up” by reclamation.

The first sweep will visit each header in the free list, except the header
of the last block on the list. If the swallowed bit is not set, the length will
be added to the header pointer to arrive at the address of the byte following
this free block. We check the in-use bit of this byte. If it is set, we are done.
Else we have two side-by-side free blocks. The swallowed bit is set on the
right free block (higher address), the digesting bit is set on the left free block
(lower address), and the length of the digesting block is updated to the sum

MATH 596/688 U: OPERATING SYSTEMS 4

of the free block’s lengths. We repeat this until either the block has infinite
size or an allocated block sits to its right. We then continue with the next
free block in the chain of free blocks.

The second sweep visits each header in the free list again. The free list
item is deleted if the swallowed bit is set, and the digesting bit is always
cleared. During the sweep, we are careful to maintain the invariant that the
last item on the free list is the infinite sized free block containing the high
addresses of the heap. This entry may try to “leap-frog” forward during the
collation step.

We remark that the digesting bit does nothing for our algorithm but is
included to ensure upward compatibility with an extension of the algorithm
which may or may not be included, depending on the results of bench-marks.
This extension is described in the next section. Again, it is important, if the
digesting bit is not maintained, to at least minimize the coding impact if
later we decide to implement this flag.

Extension to algorithm

A weak point of our algorithm is the batch nature of fragment reclamation.
This lends to wide variations in call times. A method to spread out the work
would employ the the digesting bit. Under this algorithm extension, freed
blocks would immediately swallow free neighbors, and be marked digesting.
Digesting blocks are in a transitional state: they are free but they cannot
be allocated until it is sure that all the blocks it has swallowed have be
removed from the free list. This can be assured if the free list contain no
swallowed blocks. We keep a counter of the number of swallowed blocks on
the free list. During the first-fit search of an allocation, remove from the free
list any swallowed block found along the way, decrementing the counter. If
the number of swallowed blocks becomes zero then you have two additional
permissions:

1. To clear the digesting bit of any digesting block found on the free list
during forward searches.

2. To allocate any appropriately sized digesting block.

If the swallowed block number is not zero, the algorithm cannot clear the
digesting flag nor allocate digesting free blocks. If a full reclamation is called

MATH 596/688 U: OPERATING SYSTEMS 5

for, all the algorithm needs to do is sweep the free list deleting swallowed
blocks and marking all other blocks as not digesting.

Calling Protocols

void MemoryManagementInit(void) ;
void * AllocMemory(long int size) ;
/* Inputs: size of block to allocate
Returns: a pointer to block else NULL if failed
to appropriately sized memory
*/
void FreeMemory(void * p) ;
/* Inputs: pointer to a allocated block. Must
be a pointer previously returned by AllocMemory.
Returns: none

*/

Data Structure Glossary

/* header for an allocated block */
typedef struct a_header {
long int length ;
/* in-use bit, MSB of length must
char first_user_byte ;
} A_Header ;

0 *x/

/* header for a free block */
typedef struct f_header {
long int length ;
/* in-use bit, MSB of length must
struct {
bit digesting ;
bit swallowed ;
} flags
f_header * next ;
} F_Header ;

1 x/

