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1 Basic Definitions

Definition 1 The translate of mZ by k is the set of all integers that can be
written as k plus a multiple of m:

k + mZ =
{

k + im
∣∣ i ∈ Z

}
.

Visualizing this subset of the integers, it is not hard to see that two translates
either coincide completely or have no integer in common. Also, that any integer
is in some translate. Hence, the collection of distinct translates partitions the
integers and therefore gives rise to an equivalence relation.

To prove these statements formally we will make use of the properties of
divisibility to give an alternative characterization of translates according to a
divisibility criteria.

Definition 2 For integer a, b ∈ Z, a divides b, written a | b, if and only if there
exists an integer k ∈ Z such that ak = b.

The familiar property of divisibility that we shall use, but not prove is the
following:

Theorem 1 Suppose a, b, c ∈ Z are integers and c divides a and b. Then c
divides all linear combinations of a and b, that is, for all x, y ∈ Z, c | (xa + yb).

We now give an alternative definition for translates.

Theorem 2 Two integers are in the same translate of mZ if and only if their
difference is divisible by m. That is, for all a, b ∈ Z, a, b ∈ (k + mZ) for some
integer k if and only if m | (a− b).

Proof: Suppose a, b ∈ (k + mZ). Then there are integers ia, ib such that,

a = k + iam, b = k + ibm.

Subtracting, a− b = (ia − ib)m, which is divisible by m.
Suppose now that we have a, b ∈ Z where m | (a − b). Then there is an i

such that mi = a− b, so, a ∈ b + mZ. Obviously, b ∈ b + mZ, so a and b are in
the same translate. 2

Theorem 3 Given an m ∈ Z, two translates k1 + mZ and k2 + mZ are either
disjoint or identical, depending on whether m divides k1 − k2 or not, and the
set of distinct translates covers all of Z.

Proof: Suppose two translates k1 + mZ and k2 + mZ are not disjoint. Let z
be an integer in both. So,

m | (z − k1), m | (k2 − z),
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and adding these two,

z − k1 + (k2 − z) = k2 − k1 ⇒ m | (k2 − k1).

So, if the translate are not disjoint, k1 and k2 are in the intersection. Take
an arbitrary z ∈ k1 + mZ. It is in the same translate as k2. So m | (z − k2),
therefore z ∈ k2 + mZ. Likewise, any z ∈ k2 + mZ is in k1 + mZ. This shows
that the two translates are identical.

Conversely, if m | (k1 − k2), then k1 ∈ k2 + mZ, and the translates are not
disjoint.

Every z ∈ Z is in some translate, namely z ∈ z + mZ. 2

Corollary 1 If k′ ∈ k + mZ, then k′ + mZ = k + mZ.

Definition 3 We say that two integer a, b ∈ Z are congruent modulo m if they
are in the same translate of mZ. This is written a = b (mod m).

Each translate is an equivalence class, it is the set of all integers which share
equality under congruence modulo m. Typically, each equivalence class takes
its name from the smallest non-negative integer in the class.

Theorem 4 The set { 0, 1, . . . ,m−1 } runs through all equivalence classes mod-
ulo m. That is, given any z ∈ Z, there is exactly one r between 0 and m− 1 for
which z = r (mod m).

Proof: Consider z + mZ. This translate must contain one and only one
integer r in the range 0 ≤ r < m. For if r′ were the smallest non-negative
integer in z + mZ and r′ ≥ m, then r′ −m would be non-negative and smaller
than r′. And if there were two integer 0 ≤ r ≤ r′ < m then m | (r′− r) however
0 ≤ r′ − r < m, so r′ − r must be zero. 2

2 Arithmetic modulo m

Theorem 5 Given an m ∈ Z and two translates a + mZ and b + mZ, for any
two a1 and a2 in a + mZ and b1 and b2 in b + mZ,

(a1 + b1) + mZ = (a2 + b2) + mZ,

and
(a1b1) + mZ = (a2b2) + mZ.

Proof: Write a1 = a2 + iam and b1 = b2 + ibm. Then,

a1 + b1 = a2 + b2 + (ia + ib)m
= a2 + b2 + i′m,
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Hence (a1 + b1) ∈ (a2 + b2) + mZ, and the first equality holds. Likewise,

a1b1 = a2b2 + (iba2 + iab2 + iaibm)m
= a2b2 + i′′m,

so the second equality holds. 2

Hence a well-defined arithmetic can be defined for translates based on the
arithmetic of integers.

Definition 4 We define the sum of translates to be,(
a + mZ

)
+

(
b + mZ

)
= (a + b) + mZ,

and their product to be,(
a + mZ

)(
b + mZ

)
= (ab) + mZ.

By the previous theorem, this definition depends only on the translates, not the
a and b used to describe the translate.

Translated into the language of congruences, we have the theorem,

Corollary 2 If
a1 = a2 and b1 = b2 (mod m),

then
a1 + b1 = a2 + b2 and a1b1 = a2b2 (mod m).

Since the defined arithmetic is based on that of the integers, it inherits
many properties from the integers. Addition modulo m is an associative and
commutative operation, and for each translate T there is a unique translate −T ,
its additive inverse, for which T + (−T ) = 0 + mZ. Multiplication modulo m is
also an associative and commutative operation which distributes over addition,
that is, for three translates T1, T2 and T3,

T1(T2 + T3) = T1T2 + T1T3.

Having defined addition and multiplication modulo m, we next look at divi-
sion. For the integers, one can only divide by 1 or −1. As for the rest, fractions
are invented, where the inverse of i is 1/i for i 6= 0, being careful to discover and
make all identifications, such as that 2/4 is the same as 1/2. For the integers
modulo m the situation is different. If may happen that just taking the integer
x modulo m creates a multiplicative inverse for that number, that is, an x−1

such that x−1x = xx−1 = 1 modulo m. On the other hand, it may cause x
to become a divisors of zero, that is, x is non-zero modulo m, however there is
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another number y, non-zero modulo y, such that xy = 0 modulo m. If it was
the case that x−1 existed, we would have,

y = 1y = (x−1x)y = x−1(xy) = x−10 = 0,

so no inverse to x could exist or be created without forcing y to become 0.
In general, let us consider the solution for x to the equation,

ax = b (mod m).

This means that ax is in b + mZ, that is, that there exists an i ∈ Z such that,

ax = b + mi.

To this end, we look at all linear combinations of a and m.

Definition 5 The set of linear combinations of two integers s and t is denoted
〈 s, t 〉,

〈 s, t 〉 =
{

is + jt
∣∣ i, j ∈ Z

}
.

The existence of a solution x of the above equation is equivalent to whether or
not b ∈ 〈 a,m 〉. There are some obvious and not so obvious facts about 〈 a, b 〉.

Theorem 6 For all a, b ∈ Z integers,

1. 〈 a, b 〉 = 〈 b, a 〉.

2. 〈−a, b 〉 = 〈 a, b 〉.

3. 〈 a, b 〉 = 〈 a− b, b 〉.

4. 〈 a, b 〉 = 〈 b, r 〉 where a ≥ b > 0 and r is the remainder of a÷ b.

Proof: The first two facts are the obvious ones. For the third, the computa-
tion,

ia + jb = ia− ib + (i + j)b = i(a− b) + (i + j)b,

implies that anything in 〈 a, b 〉 is in 〈 a− b, b 〉, and vice a versa. For a ≥ b > 0,
write a = qb + r and apply Fact Three q times,

〈 a, b 〉 = 〈 a− qb, b 〉 = 〈 r, b 〉 = 〈 b, r 〉.

2

Definition 6 Let a, b ∈ Z be integers. The set of common divisors of a and b
is, {

c ∈ Z
∣∣ c | a and c | b

}
.

Except in the case when a and b are both zero, the largest element in the set of
common divisors of a and b is called the greatest common divisor of a and b.
The greatest common divisor of zero and zero is defined to be zero.
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Theorem 7 The set of all linear combinations of two integer a and b is the
same as the set of all multiples of the greatest common divisor d of a and b,

〈 a, b 〉 = dZ.

Proof: Starting from 〈 a, b 〉, use the above properties to arrange things so
that 〈 a, b 〉 = 〈 s0, s1 〉 and s0 ≥ s1 ≥ 0. Let s2 be the remainder of s0 divided
by s1, in the case that s1 is not zero, and repeat this process, getting a sequence
of si such that 〈 si−2, si−1 〉 = 〈 si−1, si 〉 and si is the remainder of si−2 divided
by si−1. This process must terminate when sj = 0, in which case we have,

〈 a, b 〉 = 〈 sj−1, 0 〉 =
{

sj−1i
∣∣ i ∈ Z

}
.

Since both a and b are in sj−1Z, they are multiples of sj−1, so sj−1 is a common
divisor of a and b. If c was any other common divisor of a and b, it would divide
xa + by for all x, y ∈ Z, hence c divides anything in 〈 a, b 〉. But sj−1 ∈ 〈 a, b 〉,
so c | sj−1. Thus sj−1 is the greatest common divisor of a and b. 2

Theorem 8 In the previous theorem, let A = max( | a |, | b | ). Then the length
of the sequence of remainders s0, . . . , sj is bound by,

j ≤ 2 log2 A.

Proof: Each two steps the larger value is lessened by at least half. That is,

max(si+3, si+2) ≤ max(si, si+1)/2.

This is already true after one step if si+1 ≤ si/2. So suppose si/2 < si+1 ≤ si.
Then in the first step, si+2 is calculated,

si+2 = si − si+1 < si/2,

and and in the second step si+3 is calculated si+3 ≤ si+2.
Hence the number of pairs of steps cannot be longer than required to bring

A to the minimum value attainable,

1 ≤ A/(2j/2).

Now take the log of both sides and solve for j. 2

Therefore we also have an efficient method for calculating the greatest com-
mon divisor of a and b. Coming back to the original problem, we now have an
efficient method to determine if there exists an x such that,

ax = b (mod m).

We calculate the d such that 〈 a,m 〉 = dZ, and if b ∈ dZ, that is if d | b, then
there is a solution. Else there is no solution.
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The algorithm for calculating d can be modified to also give the i and j such
that ai + jm = d. In the case that d divides b, we multiply through by the k
such that dk = b,

a(ki) + kjm = kd = b,

and so b ∈ a(ki) + mZ,
a(ki) = b (mod m).

We have not yet discussed the uniqueness of the solution, if it exists. If
the greatest common divisor of a and m is 1, then the equation ax = b has a
solution for every possible b. Therefore, there are only enough elements to go
around for one x to be a solution for each specific b. On the other hand, if the
greatest common divisor is d > 1, then only m/d such equations have solutions,
meanwhile for every x the multiplication ax must evaluate to something.

Suppose we have a solution ax′ = b (modulo m) where 〈 a,m 〉 = dZ. Then
x′′ = x′ + i(m/d) are also solutions for i = 1, . . . , d− 1, because,

ax′′ = a(x′ + i(m/d)) = ax′ + ai(m/d) = ax′ = b (mod m),

remarking that m | ai(m/d). Furthermore, i(m/d) are all unique modulo m, for
i = 0, . . . , d− 1, so there are d solutions in this case.

Theorem 9 In the integers modulo m, let a and b be integers, and d the greatest
common divisor of a and m. Then the equation,

ax = b (mod m)

has d solutions if d | b. Else there are no solutions.


