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1. Problem 2.1.2: Show that the flow diagram of every while-program is
a flowchart program. The flow diagram of any while-program is the
connecting together of squares and diamonds. The labels in each box
are allowable under the rules of flowchart programs and so are the ways
in which the boxes are connected together. So every such flow diagram
is a flowchart program.

However, not every flowchart program is the flow diagram of a while-
program. In particular, in a while-program the flow of one branch of
any diamond box must always return to just above that box. On page
24, 2(b), we have an example of a flowchart program which breaks this
rule, and therefore can never be the flow diagram of a while-program.

I can fill in the boxes of the flowchart on page 24 so that an equivalent
while-program is simply,

begin
y := succ(x) ;
y := pred(y)
end

The two diamonds are labeled x # y; the first square is labeled y := 0;
the second square is labeled y := succ(y).

2. Problem 2.1.3: Show that flowchart programs and goto-programs are
intertranslatable. What you must be careful about in this question is
to show a goto-program whose flow diagram is ezxactly the same as any
given flowchart program. To do this we first must connect to the goto
statement an acceptable graphic. For this, just draw an arrow from the
statement before the goto to the statement which is the target of the
goto. Now it is evident that every goto-program is a correct flowchart
program: it is built out of the correct components in the correct way.

It is harder is to show that any flowchart program is realizable by the
flow diagram of a goto-program. Given a flowchart program, label
each box 1,2,...,n such that the entry point is labeled 1. Write a
goto-program,
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begin
1: S1
2: 52 ;

n: Sn ;
n+l: Sn+1
end

where each Si is determined as follows. If box ¢ is labeled with the
assignment X := 0 and has an outgoing arrow to statement j, then Si
is,

begin X := 0 ; goto j end
and similarly for the other assignment statements. If box 7 is a diamond
labeled X # Y and has the true outgoing arrow to statement ¢ and the
false outgoing arrow to statement f, then Si is,

begin while X <> Y do goto t ; goto f end

The statement Sn+1 simply serves as a common exit point for the
multiple exit points of the flowchart program and can be,

begin end
3. Problem 2.2.1: In the following programs, —- is monus, <> is #, etc.
(a) Z:=XxY
begin z := 0 ; while y <> 0 begin

z 1=z *x x ; y := pred(y) end
end

(b) Z: =X divY,

begin z := 0 ; while x >= y do begin
X :=x -—y ; z := succ(z) end
end
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(¢) Z:=XmodY,

begin while x >= y do x (= x —— y ;

Z := x end

(d) Z := X xxY,

begin z := 1 ;
Z 1= Z % X ;
end
(e) Z :=2xxX,
begin y = x ;
(f) Z :=logy(X),
begin z := 0 ;
while x <> 0
X = x div
end

4. Problem 2.2.2: Write macro definitions for if-then-else and repeat-
until constructions. A little care helps avoid conflicts between the
evaluation of the test condition and that of the statements

; while y <> 0 do begin

y := pred(y) end

X
do
2

=2 ; z 1= x % y end
= x div 2 ;

begin

; z := succ(z) end

I

the test C returns 1 for true and 0 for false. Replace,

if C then S1 else S2

with,
begin test := C ;
while test =
S1 ; test :

S2 ; test :
end

Replace,

repeat S until C

1 do begin

= succ( test ) end ;
while test = 0 do begin

= succ( test ) end
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with,
begin S ; while not C do S end

5. Problem 2.2.3: Show that the pred operator is not required for a fully-
powerful while-program language. The following macro which com-
putes pred using only succ, zero assignment and while X # Y statments
is due to Joe Tano. Replace each,

z := pred( x )
with,

temp := 0 ; z :=0 ;
while z <> x do
begin temp := z ; z := succ(z) end

6. Problem 2.2.4: Show that we could get by with just while x # 0 in our
while-program language. Replace each,

while x <> y do S
with,

begin test := (x ——y ) + (y -——x) ;
while test <> 0 do begin
S ; test := (x—-y)+(y--x) end

We must verify that test is non zero exactly when x does not equal y
and that test can be calculated using only while x not equal 0 loops.
In fact, the macros in the book for addition and monus test only for
non-equality to zero, so they are acceptable in this new language.

7. Problem 2.2.5: Show that goto and while-programs are equivalent and
that, as an interesting corollary, only depth-2 while programs are really
necessary.
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Covert the goto-program to a flowchart program. Number all the boxes
in the flow diagram and build for each box ¢ a statement .S; which exe-
cutes the assignment or test contained in the box and sets a counter to
the number of the next box to execute. For the test boxes (diamonds),
two possible settings of the counter are possible. Build a while-program
from these statements S; by setting the counter initially to 1, and loop-
ing until the counter is n 4+ 1, where n is the total number of boxes.
This is the termination condition.

The body of the loop contains if statements if counter is ¢ then S;, this
for each ¢ = 1,...,n. This completes the proof that goto-programs
are no more powerful than while-programs. Conversely, each while-
program is a goto-program, so that while-programs are no more pow-
erful than goto-programs.

To show that only depth-2 while programs are necessary, we carefully
improve our simulation to be only two deep. We have already used one
while-loop to check if the counter is n + 1. Inside this we are allowed
one more level of while-loops. The remainder of the proof is simply a
verification that we can squeeze by with so small a ration.

First, we do not have if-then-else. We must use while x # y. So each
if-then-else is proceeded by the calculation of a test variable ¢ which is
True (0) if and only if counter equals I, where I is any integer,

t := ( counter - I ) + (I -- counter )

We must verify that test can be calculated using only one level of while-
loops. In fact, the macros in the text for monus and addition use only
one level of while-loops. We can then process assignment statements
as,

t := ( counter =1 ) ;

while t<>False do begin t := False ;
assignment statement ;
counter gets next box number

end ;

To be really precise, True and False would be set up as variables,
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True := 0 ; False := succ(True) ;

and setting t false is accomplished t := succ(True) ;.

BUT, we cannot do the obvious to simulate while-boxes. This would
lead us into another level of while-looping. We merge the while-decision
into the test variable t,

tTrue := ( counter = I ) AND ( x <>y ) ;
tFalse := ( counter = I ) AND ( x =y )
while tTrue<>False ... etc.

b

Once again, we must verify that the macros in the book require just a
single level of while-loops to accomplish logical AND as well as turning
the condition x # y into a variable setting.

t := (counter=I) ;
Xxtemp := x ,;
tFalse := t ; {that is, true if counter=I}
tTrue := succ(0) ; {that is, false}
while xtemp<>y do begin
tFalse := succ(0) ;
tTrue := t ;
Xtemp =y ;
end ;





