Solution Set 4

1. Problem 3.2.2: If \mathbf{P}_{e} is a while-program computing $\Phi: N^{2} \rightarrow N$, show $\mathbf{P}_{e}(e, a)=\mathbf{P}_{e}(a, 0)$ for all a.

If $\mathbf{P}_{e}(e, a)$ halts then $\Phi(e, a)$ is defined and therefore $\mathbf{P}_{e}(a)$ halts. Conversely, if $\mathbf{P}_{e}(a)$ halts, then $\Phi(e, a)$ is defined so $\mathbf{P}_{e}(e, a)$ halts. Therefore:

$$
\mathbf{P}_{e}(e, a)=\Phi(e, a)=\mathbf{P}_{e}(a)
$$

where equality is understood in the extended sense where, in addition to the standard equality of naturals, "non-halting" equals "not-defined". By Definition 6, Section 2.3, $\mathbf{P}_{e}(a)=\mathbf{P}_{e}(a, 0)$. This completes the proof.
2. Problem 3.2.3: Let $f: N \rightarrow N$ be a computable bijection. Enumerate all while-programs by:

$$
\mathbf{P}_{f(0)}, \mathbf{P}_{f(1)}, \ldots
$$

Prove the existence of a universal function Ψ for this enumeration and show $\Psi=\mathbf{P}_{f(n)}$ for some n.
The principal result of Chapter 3 is that the universal function $\Phi(x, y)$ is computable. But then so is,

$$
\Psi(a, b)=\Phi(f(a), b)
$$

which is the universal function for the new enumeration. So $\Psi(a, b)$ is given by some arity two program \mathbf{P}_{m}. The surjectivity of f assures the existence of an n such that $m=f(n)$. Therefore, the statement remains true if f is total and onto but not if it is total and one-to-one but not onto.
3. Problem 3.2.4: Let $\Phi: N^{2} \rightarrow N$ be the universal function. Show that $\theta(x)=\Phi(x, x)$ cannot be extended to a total computable function.
Following the hint, let $\theta^{\prime} \geq \theta$ be total and computable. Let

$$
\theta^{\prime \prime}(x)=\theta^{\prime}(x)+1 .
$$

It is clear that $\theta^{\prime \prime}$ is computable if θ^{\prime} is, so $\theta^{\prime \prime}=\mathbf{P}_{j}$. So,

$$
\theta^{\prime}(j)+1=\theta^{\prime \prime}(j)=\mathbf{P}_{j}(j)=\Phi(j, j)=\theta(j)=\theta^{\prime}(j)
$$

Note that each of these equalities is a true equality: on the assumption that θ^{\prime} is total, each function is defined at j and the j-th while-program halts. We use this in the assertion $\theta^{\prime}(j)=\theta(j)$ which is only true if θ is defined at j. But $\theta^{\prime}(j)=\theta^{\prime}(j)+1$ is a contradiction.
In order to understand this proof better. Suppose $\theta^{\prime} \geq \theta$ was a computable function but perhaps not total. We still can define a computable $\theta^{\prime \prime}$ as before and the index j still exists. The equation,

$$
\theta^{\prime}(j)+1=\theta^{\prime}(j),
$$

which has no solutions over the naturals, does have a solution if we allow $\theta^{\prime}(j)=\perp$ - a non-terminating computation followed by an application of the successor function is still a non-terminating computation. Therefore θ^{\prime} is not total.
4. Problem 3.2.5: Show the existence of a function ϕ_{i} for which no algorithm can decide if $\phi_{i}(x)$ is defined for an arbitrary $x \in N$.
Let $\phi_{i}(x)=\Phi(x, x)$. This function is computable. Note that the question whether $\phi_{i}(x)$ is defined on x is equivalent to whether the x-th while-program halts on x, which is not computable.

