Solution Set 5

A midterm solution set will not be made available.

1. Problem 4.1.3: Let α and β be unary computable functions such that $A=\operatorname{DOM}(\alpha), B=\operatorname{DOM}(\beta)$, and $A \cap B=\emptyset$.
Does there necessarily exist a computable function γ such that $\gamma(A)=$ $\{0\}$ and $\gamma(B)=\{1\}$? Answer: yes. Proof: dovetail the two computations.

Does there necessarily exist a total computable function f such that $f(A)=\{0\}$ and $f(B)=\{1\}$. Answer: no. Proof: Consider the insidious function,

$$
\psi(n)=\overline{\varphi_{n}(n)}
$$

meaning that, where $\varphi_{n}(n)$ is defined, $\psi(n)$ takes the opposite value. This is computable. The functions α and β can be derived from ψ as having proper domains for the problem statement. A total, computable extension f of ψ would have index j and $\varphi_{j}(j)$ must halt (because f is total). So,

$$
f(j)=\psi(j)=\overline{\varphi_{j}(j)}=\overline{f(j)}
$$

A contradiction.
2. Problem 4.1.4: Discuss the computational status of each of the unary functions f_{1}, f_{2}, and f_{3} below - according to whether or not it is the case that for all $i, j, k \in \mathbf{N}-\{0\}$ and all $n>2: i^{m}+j^{n} \neq k^{n}$ (Fermat's last theorem).

$$
f_{1}(n)= \begin{cases}1 & \exists i, j, k \neq 0: i^{n}+j^{n}=k^{n} \\ \perp & \text { else }\end{cases}
$$

This is computable whether or not Fermat's last theorem holds: just try all i, j, k.

$$
\begin{aligned}
& f_{2}(n)= \begin{cases}\perp & \exists i, j, k: \ldots \\
0 & \text { else }\end{cases} \\
& f_{3}(n)= \begin{cases}1 & \exists i, j, k: \ldots \\
0 & \text { else }\end{cases}
\end{aligned}
$$

If Fermat's is true, then these are computable. In fact, $f_{2}(n)$ is the sequence $\{0, \perp, \perp, 0,0, \ldots\}$ and f_{3} is similarly definable. If Fermat's is not true, then for some n perhaps i, j, k exist which satisfy the equation $i^{n}+j^{n}=k^{n}$. Then f_{3} computable implies f_{2} computable, obviously. However, f_{2} computable and f_{1} computable implies f_{3} computable, by dovetailing computations. So the computability of f_{2} and f_{3} are equivalent and reduces to the question of the decidability of the set;

$$
\left\{n \in \mathbf{N} \mid \exists i, j, k \in \mathbf{N}-\{0\} \text { such that } i^{n}+j^{n}=k^{n}\right\}
$$

I do not believe the decidability of this set has been ascertained.

