
Math 688: Theory of Computability and Complexity 1

Solution Set 7 Date: 24 November, 1992

1. Multiply on a Turing Machine:

b 1x+1 b 1y+1 b∗ ⇒ b 1xy+1 b∗

We build this up from subroutines. In class we showed how to have a
subroutine which scans left or right for double-blank. We first describe
how to add a number to its neighbor provided that a one exists to the
left:

1 b 1x+1 b 1y+1 b∗ ⇒ 1 b 1x+1 b 1x+y+1 b∗

Additionally, we will never move the head leftwards of the leftmost
character in the picture.

(a) Repeat until the head discovers b 1 b , that is, until x becomes 0,

• Move right.

• Put a blank.

• Scan right for a double-blank.

• Put a one

• Scan left for a double-blank.

(b) Once the termination-condition is satisfied, write 1’s while moving
left until a 1 is found.

(c) Now move once right and write a blank.

The overall Turing Machine works as follows:

(a) Check if either x or y is zero. If so, clear the tape, write zero and
stop.

(b) Else, effectuate the following transformation:

b 1x+1 b 1y+1 b∗ ⇒ b 1x b 1y+1 b 1y+1 b∗

This can be accomplished as a small variation on the addition
subroutine outline above.



Math 688: Theory of Computability and Complexity 2

(c) Reposition the head:

b 1x b 1y+1 b 1y+1 b∗ ⇒ b 1x b 1y+1 b 1y+1 b∗

(d) Apply this procedure until the head discovers b 1 b , that is, until
x becomes 0,

• Decrement the number to the right of the head:

– Search left to double-blank.

– Move right.

– Write a blank.

– Search right to single-blank.

• Add the number directly to the left of the head to its left
neighbor. Use the above described subroutine.

(e) Clean-up: move left, write a blank, move right twice. Until the
head is above a blank, write a blank and move right.

2. Simulate a TM with a while-program. We need a set of variable defini-
tions and macros which simulate the basic Turing Machine functions:
move right, move left, write a one, write a blank and sense the symbol
under the head. We represent the tape’s contents as three numbers:
left-tape, right-tape and under-head. Suppose the tape is as displayed:

. . . l3 l2 l1 l0 h r0 r1 r2 r3 . . .

where h is either 1 or b and both the li and the ri form semi-infinite
sequences i = 0, 1, 2, . . . which are all blanks for large enough i. Then,

left-tape =
∞∑
i=0

li2
i,

right-tape =
∞∑
i=0

ri2
i,

under-head = h,

where a blank is interpreted arithmetically as a 0. To sense the tape
head, just look at the value of under-head. To set the tape under the
head to 1 or blank, change the value of under-head. To move right,
update the variables,



Math 688: Theory of Computability and Complexity 3

left-tape := 2 * left-tape + h ;

h := right-tape mod 2 ;

right-tape := right-tape div 2 ;

To move left, interchange the words “right” and “left” above.

Given these macros, we transform a TM to a while-program by num-
bering its states 0, . . . , n, where 0 is the halt state and 1 is the start
state. The variables X1, . . . , Xk are written to the simulated tape, the
variable state is set to 1 and the while program executes:

while state<>0 do

case state of

1: if under-head=1 then begin

{update state and tape}

else

{update state and tape}

2: ...

.

.

.

end case ;

The TM state-transition table is encoded in the case-statement. When
the loop is exited, the simulated tape is written to X1.

What is the time for this simulation? It would be convenient for the
theory of complexity if the simulation was polynomial time. However,
this isn’t so. The unary encoding of x becomes the value 2x+1−1 inside
the while-program. Just to get some variable inside the while-program
to go from a representation of x ≥ 1 to a representation of 2x at least:

22x+1 − 1− (2x+1 − 1) ≥ 4x

successor operations will be required! On the other hand, a Turing
Machine can perform multiplication by two in time polynomial in the
input.

As an exercise, try to construct a polynomial-time simulation of a Tur-
ing Machine by a while-program or prove that this is impossible.



Math 688: Theory of Computability and Complexity 4

3. Write a program that computes itself. Here is one in Pascal:

program pm(input,output);const a=’program pm(input,

output);const a=;begin write(substr(a,1,33)+chr(39)

+a+chr(39)+substr(a,34,66))end.’;begin write(substr

(a,1,33)+chr(39)+a+chr(39)+substr(a,34,66))end.

A terse C solution was offered by Bentley Hargrave:

char*s="char*s=%c%s%c;main(){printf(s,34,s,34,10);

}%c";main(){printf(s,34,s,34,10);}

The line breaks shown in these programs are not actually part of their
text.




