Math 688: Theory of Computability and Complexity \qquad

Solution Set 7

Date: 24 November, 1992

1. Multiply on a Turing Machine:

$$
b 1^{x+1} b 1^{y+1} b^{*} \Rightarrow b 1^{x y+1} b^{*}
$$

We build this up from subroutines. In class we showed how to have a subroutine which scans left or right for double-blank. We first describe how to add a number to its neighbor provided that a one exists to the left:

$$
1 \longdiv { b } 1 ^ { x + 1 } b 1 ^ { y + 1 } b ^ { * } \Rightarrow 1 \boxed { b } 1 ^ { x + 1 } b 1 ^ { x + y + 1 } b ^ { * }
$$

Additionally, we will never move the head leftwards of the leftmost character in the picture.
(a) Repeat until the head discovers $b 1 b$, that is, until x becomes 0 ,

- Move right.
- Put a blank.
- Scan right for a double-blank.
- Put a one
- Scan left for a double-blank.
(b) Once the termination-condition is satisfied, write 1's while moving left until a 1 is found.
(c) Now move once right and write a blank.

The overall Turing Machine works as follows:
(a) Check if either x or y is zero. If so, clear the tape, write zero and stop.
(b) Else, effectuate the following transformation:

$$
b 1^{x+1} b 1^{y+1} b^{*} \Rightarrow b 1^{x} b 1^{y+1} b 1^{y+1} b^{*}
$$

This can be accomplished as a small variation on the addition subroutine outline above.
(c) Reposition the head:

$$
b 1^{x} b 1^{y+1} b 1^{y+1} b^{*} \Rightarrow b 1^{x} b 1^{y+1} b 1^{y+1} b^{*}
$$

(d) Apply this procedure until the head discovers $b 1 \boxed{b}$, that is, until x becomes 0 ,

- Decrement the number to the right of the head:
- Search left to double-blank.
- Move right.
- Write a blank.
- Search right to single-blank.
- Add the number directly to the left of the head to its left neighbor. Use the above described subroutine.
(e) Clean-up: move left, write a blank, move right twice. Until the head is above a blank, write a blank and move right.

2. Simulate a TM with a while-program. We need a set of variable definitions and macros which simulate the basic Turing Machine functions: move right, move left, write a one, write a blank and sense the symbol under the head. We represent the tape's contents as three numbers: left-tape, right-tape and under-head. Suppose the tape is as displayed:

$$
\ldots l_{3} l_{2} l_{1} l_{0} \boxed{h} r_{0} r_{1} r_{2} r_{3} \ldots
$$

where h is either 1 or b and both the l_{i} and the r_{i} form semi-infinite sequences $i=0,1,2, \ldots$ which are all blanks for large enough i. Then,

$$
\begin{aligned}
\text { left-tape } & =\sum_{i=0}^{\infty} l_{i} 2^{i}, \\
\text { right-tape } & =\sum_{i=0}^{\infty} r_{i} 2^{i}, \\
\text { under-head } & =h,
\end{aligned}
$$

where a blank is interpreted arithmetically as a 0 . To sense the tape head, just look at the value of under-head. To set the tape under the head to 1 or blank, change the value of under-head. To move right, update the variables,

```
left-tape := 2 * left-tape + h ;
h := right-tape mod 2 ;
right-tape := right-tape div 2 ;
```

To move left, interchange the words "right" and "left" above.
Given these macros, we transform a TM to a while-program by numbering its states $0, \ldots, n$, where 0 is the halt state and 1 is the start state. The variables $X 1, \ldots, X k$ are written to the simulated tape, the variable state is set to 1 and the while program executes:

```
while state<>0 do
    case state of
        1: if under-head=1 then begin
                {update state and tape}
            else
                {update state and tape}
        2: ...
    end case ;
```

The TM state-transition table is encoded in the case-statement. When the loop is exited, the simulated tape is written to $X 1$.
What is the time for this simulation? It would be convenient for the theory of complexity if the simulation was polynomial time. However, this isn't so. The unary encoding of x becomes the value $2^{x+1}-1$ inside the while-program. Just to get some variable inside the while-program to go from a representation of $x \geq 1$ to a representation of $2 x$ at least:

$$
2^{2 x+1}-1-\left(2^{x+1}-1\right) \geq 4^{x}
$$

successor operations will be required! On the other hand, a Turing Machine can perform multiplication by two in time polynomial in the input.

As an exercise, try to construct a polynomial-time simulation of a Turing Machine by a while-program or prove that this is impossible.

Math 688: Theory of Computability and Complexity 4
3. Write a program that computes itself. Here is one in Pascal:

```
program pm(input,output);const a='program pm(input,
output);const a=;begin write(substr(a,1,33)+chr(39)
+a+chr(39)+substr(a,34,66))end.';begin write(substr
(a,1,33)+chr (39)+a+chr (39)+substr (a, 34,66)) end.
```

A terse C solution was offered by Bentley Hargrave:

```
char*s="char*s=%c%s%c;main() {printf(s,34,s,34,10);
}%c";main(){printf(s,34,s,34,10);}
```

The line breaks shown in these programs are not actually part of their text.

