
Math 688: Theory of Computability and Complexity 1

Solution Set 8 Date: 1 December, 1992

1. Prove the following functions are primitive recursive,

(a) x < y. The functions sgn(n) and monus(x, y) are primitive re-
cursive. Hence by composition, so is

< (x, y) = sgn(monus(U2
2 (x, y), U2

1 (x, y))).

(b) xy. The function times(x, y) is primitive recursive. Hence by
primitive recursion, so is,

power(x, y) =

{
succ(Z(y)) x = 0
h(power(x− 1, y), x− 1, y) x > 0

where,
h(x, y, z) = times(U3

1 (x, y, z), U3
3 (x, y, z)).

(c) |x − y |. Addition and monus are primitive recursive. Hence by
composition so is

|x− y | = add(monus(x, y),monus(U2
2 (x, y), U2

1 (x, y))).

2. Show that the predicates =, 6= and ≤ are primitive recursive. We can
use Corollary 6: A booleans combination of primitive recursive pred-
icates is primitive recursive. The three predicates can be written as
boolean combinations of < (x, y) and < (U2

2 (x, y), U2
1 (x, y)).

3. Discuss the ambiguity of the grammar,

S → S1 |S2

S1 → if C then S1 else S2 | a | b
S2 → if C then S | if C then S1 else S2 | a | b
C → p|q

This is Example 12, page 232 of A Programming Approach to Com-
putability.

Math 688: Theory of Computability and Complexity 2

The grammar is ambiguous. The statement,

if p then if p then a else if p then a else b

can be parsed in two ways, giving rise to two distinct parse trees. I
can’t get my paint program to run, so instead of a nice tree graphic,
I will have to use parentheses notation. It should be clear what the
parentheses are trying to say. Here is the first parse tree:

S → if C then S1 else S2

→ if C then (if C then S1 else S2) else S2

→ if C then (if C then S1 else (if C then S)) else S2

→ if p then (if p then a else (if p then a)) else b,

and here, the second:

S → if C then S

→ if C then (if C then S1 else S2)

→ if C then (if C then S1 else (if C then S1 else S2))

→ if p then (if p then a else (if p then a else b)),

We present an unambiguous grammar for if-then-else.

S∗ → if C then S∗ | if C then S3 else S∗ | a | b
S3 → if C then S3 else S3 | a | b
C → p | q

We prove that this grammar is unambiguous and that it produces all
correct if-then-else strings. In fact, the grammar associates “then”
and “else” clauses according the the standard Pascal rule. To simplify
things somewhat, we will replace if C then by the single symbol
ifen . Given a ifen-else string, we can label each “ifen” and “else”

Math 688: Theory of Computability and Complexity 3

with an integer that indicates how they are to group. Let a counter
begin at 0 and scan the string left to right. At each “ifen”, assign the
counter value to the “ifen” and increment the counter by one. At each
“else”, decrement the counter by one and assign the resulting value to
the “else”. Note that an “else” associates with the first “ifen” to its left
which carries the same label. To illustrate, we prove a useful Lemma.

Lemma 1 The S3 production is unambiguous and produces any correct
ifen-else string provided that it has no more “ifen’s” than “else’s”.

Proof: As the labeling proceeds from left to right, the counter is
always set to the excess number of “then’s” over “else’s” scanned so far.
The first return to zero of the counter will occur with the “else” given
by the first S3 production. Therefore, this “else” is unambiguously
tied to the first “ifen”. We now argue by induction on the number
of “else’s” appearing in the string that any string resulting from S3 is
unambiguous.

If no “else” appears, the parse tree is simply S3 → a | b. If there is some
“else” which appears, the labeling indicates which “else” divides the left
subtree from the right subtree. Each subtree is a string generated from
S3 with at least one less “else”. By induction, each of this substrings
gives a unique parse tree. Therefore, the entire parse tree is unique.

Any correctly generated ifen-else string with as many “ifen’s” as “else’s”
is either a, b or has an “else” labeled with a zero. Taking the “ifen” part
of the string associated with the “else” of label zero, it has as many
“ifen’s” as “else’s” (that is why the “else” has label zero). Therefore,
the “else” part also has as many “ifen’s” as “else’s”. By induction on
the number of “else’s” in the strings, we can conclude that the string
can be generated by S3. 2

Theorem 1 The S∗ production is unambiguous and produces any cor-
rect ifen-else string.

Proof: We prove this by induction on the number of “else’s” in the
string. If “else” does not appear, the production is obviously unam-
biguous. Suppose unambiguous any string with less than k “else’s”.

Math 688: Theory of Computability and Complexity 4

Given a string with k “else’s”, apply the labeling and choose the left-
most “else” from among the “else’s” with smallest label, call it “else´”.
Suppose that the label of “else´” is i. Then the string is the result of
i productions of the form S∗ → ifen S∗ followed by

S∗ → ifen S3 else′ S∗

The string binding to S3 has as many “ifen’s” as “else’s” and so, by the
Lemma, it is unambiguously generated. The string binding to S∗ has
fewer than k “else’s” and so by induction it is unambiguously generated.
Therefore, the entire string is unambiguously generated.

We argue that any valid if-then-else string results from S∗. Any valid
if-then-else string can be assigned a labeling and the counter never goes
negative. Therefore, if an “else” appears, we can choose the leftmost
“else” among those of smallest label, this label being zero or larger.
Call it “else´”. Associating “else´” with the unique “ifen” to its left of
equal label, the number of intervening ‘ifen’s” and “else’s” are equal.
So the Lemma provides a production for the intervening string starting
from S3. To the left of the “ifen” associate to “else´” there are no
“else’s”. So repeated productions of the form S∗ → ifen S∗ complete
the consturction of the string to the left of “else´”. Arguing by induc-
tion on the number of “else’s”, the string to the right of “else´” can be
generated starting from S∗. 2

