Least Fixed Points

Some non-examples of the least-fixed-point theorem.
Theorem 1 (Least Fixed Point) Let A have a partial-order with least element \perp and such that any ascending chain as a least upper bound. Let Θ be an endomorphism of A which is continuous and total. Then,

$$
Y(\Theta)=\bigvee_{n \geq 0} \Theta^{n}(\perp)
$$

exists and is the unique least fixed point of Θ.

1. Take A the set of opens of a topological space except for the empty set. The A fails the hypothesis of the theorem only it that it lacks a least element. Let Θ be the identity, it is continuous and total. Yet is has no least fixed point.
2. Take A to be the set of all subsets of a set except the empty set and Θ the identity. The failure here is that A has no least element. All singletons are least fixed points.
3. Let A be the reals in the interval $[0,1]$ with usual size ordering. It is an ω-cpo with $\perp=0$. Let Θ be the discontinuous map,

$$
\Theta(x)= \begin{cases}1 / 4+x / 2 & x \in[0,1 / 2) \\ 1 / 2+x / 2 & x \in[1 / 2,1]\end{cases}
$$

Then $\Theta(1)=1$ is the least-fixed-point although the sup of $\Theta^{n}(\perp)$ is $1 / 2$.

