
Math 688: Theory of Computability and Complexity 1

Burt Rosenberg University of Miami Fall 1992

Simulation of Infinite Memory

In KMA the following program rewriting function short is desired. Given a
program Pe of arity j using k variables, k ≥ j, derive a program Pshort(e)

such that Pshort(e) = Pe and Pshort(e) uses only j + r variables, where r is a
“constant” depending on j but not k.

The approach in KMA used pairing functions to fold a finite amount of
memory into a fixed amount of memory. It is just as easy to devise a scheme
which folds an infinite amount of memory into a fixed amount provided that
only a finite number of variables are ever simultaneously non-zero. For a
small conceptual effort to clarify what an infinite memory could mean, the
while-program mechanisms are simplified.

A pairing function is a computable bijection τ : N×N→ N. Its inverse
is a pair of projection functions π1 and π2 such that,

i = τ(π1(i), π2(i))

for all i ∈ N. For our construction to succeed, we require τ(0, 0) = 0. The
pairing function of KMA is an example of such a pairing function:

τ(i, j) =
(i+ j)(i+ j + 1)

2
+ i. (1)

We will define the symbol Nω as the direct sum of an infinite number of
copies of the naturals. An element of Nω is an infinite-dimensional vector
of naturals, all but finitely many entries being zero. The vector ei which is
zero in all but the i-th coordinate where it is one is an example of an element
from Nω. So is the vector which is 1 for all odd numbers less than a billion
and zero elsewhere.

Theorem 1 There exists a computable bijection τ ∗ : Nω → N with a family
of projection functions π∗i : N→ N, i = 1, 2,

Proof: Let τ be a pairing function 1. Then τ ∗ is,

τ ∗(x1, x2, . . .) = τ(x1, τ(x2, . . . τ(xi, . . .) . . .)).

Math 688: Theory of Computability and Complexity 2

Written this way, the function involves infinite recursion and is not com-
putable, in fact, the definition itself is suspect. However, since τ(0, 0) = 0,
at a certain point it is inconsequential to continue the recursion. Define,
therefore,

τ ∗(x) = τ i(x) = τ(x1, τ(x2, . . . , τ(xi, 0)) . . .)

where i is any integer such that xj is zero for all j > i. If i and i′ are two
integers such that xj = 0 for all j > min(i, i′), then τ i(x) = τ i

′
(x).

The inverse is defined as,

π∗i (x) = π1(π2
(i−1)(x)).

That is, apply the projection π2 iteratively i− 1 times to the argument, and
then project by π1. Since τ ∗ is τ i for some i, the proof that this π∗ is the
inverse reduces to what has already been proved by KMA for the case of
pairing functions Nk → N.

The function τ ∗ is injective. Suppose τ ∗(x) = τ ∗(y). Then for some i and
j, τ ∗(x) = τ i(x) and τ ∗(y) = τ j(y). Letting k = max(i, j) then,

τ k(x) = τ i(x) = τ ∗(x) = τ ∗(y) = τ j(y) = τ k(y).

In KMA it is shown that τ k is a bijection, so x = y.
The surjectivity a consequence of π∗ being total.

2

To encode the variable X1, . . . , Xk of a certain k-variable while-program
into a single variable, say M , we consider the finite set of variables which the
program actually uses as a subset of the infinite set of variables:

. . . , X−3, X−2, X−1, X0, X1, X2, X3,

The variables of index zero or less are always zero, as are the variables of
indices larger than k.

For a j-ary program Pe begin by encoding the vector,

(X1, X2, . . . , Xj, 0, 0, . . .)

into a single number M . Since j is known, it is possible to select the proper
finite version of τ ∗. The variables,

(X0, X−1, . . .),

Math 688: Theory of Computability and Complexity 3

being all zero are encoded into the number M ′ = 0. We have the following
macro, which takes the “top” number off of M and places it on M ′.

nextX(M,M’) =

begin

M’ := tau(pi1(M), M’) ;

M := pi2(M)

end

Extraction of the value of a certain Xi from M is then possible by shifting
an appropriate number of times and then projecting,

Xi := get(M,i) =

begin

M’’:= M ;

M’ := 0 ;

i := prev(i) ;

while i<>0 do nextX(M’’,M’) ;

Xi := pi1(M’’)

end

Changing the value of a certain Xi in memory M proceeds as follows.

set(M,i,Xi) =

begin

M’ := 0 ;

k := prev(i) ;

while k<>0 do nextX(M,M’) ;

M := pi2(M) ;

M := tau(Xi,M) ;

k := pred(i) ;

while k<>0 do nextX(M’,M)

end

At the close of the program, we need to correctly place a value in X1,

X1 := pi1(M)

