Fall 1992

Simulation of Infinite Memory

In KMA the following program rewriting function short is desired. Given a program P_{e} of arity j using k variables, $k \geq j$, derive a program $P_{\text {short(e) }}$ such that $P_{\text {short(e) }}=P_{e}$ and $P_{\text {short(e) }}$ uses only $j+r$ variables, where r is a "constant" depending on j but not k.

The approach in KMA used pairing functions to fold a finite amount of memory into a fixed amount of memory. It is just as easy to devise a scheme which folds an infinite amount of memory into a fixed amount provided that only a finite number of variables are ever simultaneously non-zero. For a small conceptual effort to clarify what an infinite memory could mean, the while-program mechanisms are simplified.

A pairing function is a computable bijection $\tau: \mathbf{N} \times \mathbf{N} \rightarrow \mathbf{N}$. Its inverse is a pair of projection functions π_{1} and π_{2} such that,

$$
i=\tau\left(\pi_{1}(i), \pi_{2}(i)\right)
$$

for all $i \in \mathbf{N}$. For our construction to succeed, we require $\tau(0,0)=0$. The pairing function of KMA is an example of such a pairing function:

$$
\begin{equation*}
\tau(i, j)=\frac{(i+j)(i+j+1)}{2}+i \tag{1}
\end{equation*}
$$

We will define the symbol \mathbf{N}^{ω} as the direct sum of an infinite number of copies of the naturals. An element of \mathbf{N}^{ω} is an infinite-dimensional vector of naturals, all but finitely many entries being zero. The vector e_{i} which is zero in all but the i-th coordinate where it is one is an example of an element from \mathbf{N}^{ω}. So is the vector which is 1 for all odd numbers less than a billion and zero elsewhere.

Theorem 1 There exists a computable bijection $\tau^{*}: \mathbf{N}^{\omega} \rightarrow \mathbf{N}$ with a family of projection functions $\pi_{i}^{*}: \mathbf{N} \rightarrow \mathbf{N}, i=1,2, \ldots$.

Proof: Let τ be a pairing function 1 . Then τ^{*} is,

$$
\tau^{*}\left(x_{1}, x_{2}, \ldots\right)=\tau\left(x_{1}, \tau\left(x_{2}, \ldots \tau\left(x_{i}, \ldots\right) \ldots\right)\right)
$$

Written this way, the function involves infinite recursion and is not computable, in fact, the definition itself is suspect. However, since $\tau(0,0)=0$, at a certain point it is inconsequential to continue the recursion. Define, therefore,

$$
\tau^{*}(x)=\tau^{i}(x)=\tau\left(x_{1}, \tau\left(x_{2}, \ldots, \tau\left(x_{i}, 0\right)\right) \ldots\right)
$$

where i is any integer such that x_{j} is zero for all $j>i$. If i and i^{\prime} are two integers such that $x_{j}=0$ for all $j>\min \left(i, i^{\prime}\right)$, then $\tau^{i}(x)=\tau^{i^{\prime}}(x)$.

The inverse is defined as,

$$
\pi_{i}^{*}(x)=\pi_{1}\left(\pi_{2}^{(i-1)}(x)\right)
$$

That is, apply the projection π_{2} iteratively $i-1$ times to the argument, and then project by π_{1}. Since τ^{*} is τ^{i} for some i, the proof that this π^{*} is the inverse reduces to what has already been proved by KMA for the case of pairing functions $\mathbf{N}^{k} \rightarrow \mathbf{N}$.

The function τ^{*} is injective. Suppose $\tau^{*}(x)=\tau^{*}(y)$. Then for some i and $j, \tau^{*}(x)=\tau^{i}(x)$ and $\tau^{*}(y)=\tau^{j}(y)$. Letting $k=\max (i, j)$ then,

$$
\tau^{k}(x)=\tau^{i}(x)=\tau^{*}(x)=\tau^{*}(y)=\tau^{j}(y)=\tau^{k}(y)
$$

In KMA it is shown that τ^{k} is a bijection, so $x=y$.
The surjectivity a consequence of π^{*} being total.

To encode the variable X_{1}, \ldots, X_{k} of a certain k-variable while-program into a single variable, say M, we consider the finite set of variables which the program actually uses as a subset of the infinite set of variables:

$$
\ldots, X_{-3}, X_{-2}, X_{-1}, X_{0}, X_{1}, X_{2}, X_{3}, \ldots
$$

The variables of index zero or less are always zero, as are the variables of indices larger than k.

For a j-ary program P_{e} begin by encoding the vector,

$$
\left(X_{1}, X_{2}, \ldots, X_{j}, 0,0, \ldots\right)
$$

into a single number M. Since j is known, it is possible to select the proper finite version of τ^{*}. The variables,

$$
\left(X_{0}, X_{-1}, \ldots\right)
$$

being all zero are encoded into the number $M^{\prime}=0$. We have the following macro, which takes the "top" number off of M and places it on M^{\prime}.

```
nextX (M, \(M^{\prime}\) ) \(=\)
    begin
        M' := tau( pi1 (M) , M' ) ;
        M \(:=\) pi2(M)
    end
```

Extraction of the value of a certain X_{i} from M is then possible by shifting an appropriate number of times and then projecting,

```
Xi := get(M,i) =
    begin
        M'':= M ;
        M' := 0 ;
        i := prev(i) ;
        while i<>0 do nextX(M'',M') ;
        Xi := pi1(M'')
    end
```

Changing the value of a certain X_{i} in memory M proceeds as follows.

```
set(M,i,Xi)=
    begin
        M' := 0 ;
        k := prev(i) ;
        while k<>0 do nextX(M,M') ;
        M := pi2(M) ;
        M := tau(Xi,M) ;
        k := pred(i) ;
        while k<>0 do nextX(M',M)
    end
```

At the close of the program, we need to correctly place a value in X_{1},

```
X1 := pi1(M)
```

