Math 688: Theory of Computability and Complexity 1

Midterm

October 20, 1992. 5:30-8:00 PM

There are seven problems for a total of 100 points. Good luck.

Name:

Problem	Credit
1	
2	
3	
4	
5	
6	
7	
Total	

Math 688: Theory of Computability and Complexity

1. (10 Points.)

Are there more numbers than even numbers? To resolve this, either find a bijection between the naturals $\{0,1,2, \ldots\}$ and the even, positive numbers $\{0,2,4, \ldots\}$ or prove that none exists. What does this mean for the cardinality of the two sets: the set of naturals and the set of even naturals?

Math 688: Theory of Computability and Complexity
2. (10 Points.)

Consider the following function:

$$
f(n)= \begin{cases}n / 3 & \text { if } n \text { is divisible by } 3, \\ \perp & \text { else } .\end{cases}
$$

Give two different total functions g_{1} and g_{2} defined $N \rightarrow N$ which are extensions of f.

Math 688: Theory of Computability and Complexity 4
3. (20 Points.)

For each of the following mark "u" if the set is uncountable, "c" if it is countable.

The set of all real numbers.The set of all integers, both positive and negative.
Fix a real $\epsilon>0$, positive but no matter how small. The set of all reals in the interval $[1,1+\epsilon]$.
\square The set of all subsets of the natural numbers.
The set of all finite subset of the natural numbers.

Math 688: Theory of Computability and Complexity 5
4. (15 Points.)

Prove: It is undecidable whether an arbitrary while-program halts on some input value. I.e., the following function is not computable:

$$
f(i)= \begin{cases}1, & \text { if } \operatorname{DOM}\left(\varphi_{i}\right) \neq \emptyset \\ 0, & \text { otherwise }\end{cases}
$$

where φ_{i} is the i-th computable unary function in our standard enumeration.

Math 688: Theory of Computability and Complexity 6
5. (15 Points.)

Write a while-program which computes the maximum of two numbers. I.e., the program moves to X 1 the larger of the values in X 1 and X 2 :

$$
\mathrm{X} 1:=\max (\mathrm{X} 1, \mathrm{X} 2)
$$

Use no macros!

Math 688: Theory of Computability and Complexity
6. (15 Points.)

We define a new binary operation on functions, called meet. Given two partial functions f and g, the meet of f and $g, f \wedge g$, is the largest partial function h such that $h \leq f$ and $h \leq g$. That is, if h^{\prime} is another partial function such that $h^{\prime} \leq f$ and $h^{\prime} \leq g$, then $h^{\prime} \leq h$. In fact,

$$
(f \wedge g)(i)= \begin{cases}f(i) \text { or } g(i) & \text { when both are defined and equal, } \\ \perp & \text { elsewise. }\end{cases}
$$

Show that if f and g are computable, then $f \wedge g$ is computable.
7. (15 Points.)

Use Church's Thesis to give an informal but rigorous argument that if a set of numbers cannot be effectively generated, then it is undecidable whether an arbitrary number is in the set.

