Midterm

OCTOBER 20, 1992. 5:30-8:00 PM

There are seven problems for a total of 100 points. Good luck.

Name:		
Name.		
ranic.		

Problem	Credit
1	
2	
3	
4	
5	
6	
7	
Total	

Are there more numbers than even numbers? To resolve this, either find a bijection between the naturals $\{0, 1, 2, \dots\}$ and the even, positive numbers $\{0, 2, 4, \dots\}$ or prove that none exists. What does this mean for the cardinality of the two sets: the set of naturals and the set of even naturals?

Consider the following function:

$$f(n) = \begin{cases} n/3 & \text{if } n \text{ is divisible by 3,} \\ \bot & \text{else.} \end{cases}$$

Give two different *total* functions g_1 and g_2 defined $N \to N$ which are extensions of f.

Матн	688: Theory of Computability and Complexity4
3. (2	20 Points.)
	or each of the following mark "u" if the set is uncountable, "c" if it is buntable.
	The set of all real numbers.
	The set of all integers, both positive and negative.
	Fix a real $\epsilon > 0$, positive but no matter how small. The set of all reals in the interval $[1, 1 + \epsilon]$.
	The set of all subsets of the natural numbers.

The set of all $\it finite$ subset of the natural numbers.

Prove: It is undecidable whether an arbitrary while-program halts on some input value. I.e., the following function is not computable:

$$f(i) = \begin{cases} 1, & \text{if } DOM(\varphi_i) \neq \emptyset; \\ 0, & \text{otherwise,} \end{cases}$$

where φ_i is the *i*-th computable unary function in our standard enumeration.

Write a while-program which computes the maximum of two numbers. I.e., the program moves to X1 the larger of the values in X1 and X2:

$$X1 := max(X1, X2)$$

Use no macros!

We define a new binary operation on functions, called *meet*. Given two partial functions f and g, the meet of f and g, $f \wedge g$, is the largest partial function h such that $h \leq f$ and $h \leq g$. That is, if h' is another partial function such that $h' \leq f$ and $h' \leq g$, then $h' \leq h$. In fact,

$$(f \wedge g)(i) = \begin{cases} f(i) \text{ or } g(i) \text{ when both are defined and equal,} \\ \bot \text{ elsewise.} \end{cases}$$

Show that if f and g are computable, then $f \wedge g$ is computable.

Use Church's Thesis to give an informal but rigorous argument that if a set of numbers cannot be effectively generated, then it is undecidable whether an arbitrary number is in the set.