
Math 688: Theory of Computability and Complexity 1

Burt Rosenberg University of Miami Fall 1992

Recursion is while-program computable

We show that recursively defined functions are while-program computable via
least-upper-bound of partial functions by extension ordering. The purpose
is to combine approaches from Kfoury, Moll and Arbib, “A Programming
Approach to Computability”, hereafter abbreviated KMA, thus introduce
the abstract apparatus of posets of functions without diverging the discussion
into denotational semantics.

Recursive programs are those which call themselves. Non-recursive pro-
grams with subroutine calls can be treated as macros. Therefore we reduce
immediately to the case of self-recursion. We let the program refer to itself
by a special symbol created and reserved for this purpose. We shall use the
symbol R. To transform programs to indices, we need to include R in Table 1
on page 46 of KMF. We will agree that R has decimal representation 54.

Let’s take as running example the factorial program,

fact(n) =

{
1 n = 0
n fact(n− 1) n > 0

written as,

begin

if X1=0 then x1:=1

else begin

x2:=x1 ; x1:=pred(X1);

R; {recursion symbol}

X1:=X2*X1

end

end

There are four problems to contend with,

1. How can we place a function inside itself? This will be resolved by
defining a substitution function.

2. Straight textual substitution of the function inside of itself will cause
a conflict of variable names. We will define a function which renames
variable to avoid the problem.

Math 688: Theory of Computability and Complexity 2

3. The renaming and substitution must proceed an infinite number of
times in order to reach the function. We will approach this problem
two ways. First by the notion of a limit function, and second by the
definition of a mechanism capable of substituting the function inside
itself an arbitrary but finite number of times on demand.

4. Assigning semantics to R. Having introduced this symbol, we need to
say what happens when while-program execution reaches this symbol.
We shall avoid this by removing all references to R before actually
calling the result a while-program.

We will restrict our attention, with loss of generality, to unary functions.

Substitution and Renaming

Let the Recursion Kernel, abbreviated RK, be the program which defines
the recursive function perhaps using the special symbol R. Given a program
P, such as RK, its encoding as an integer will be denoted [P]. The program
encoded by integer i will be denoted Pi. So, for instance,

RK = P[RK].

Define a number theoretic function,

sub : N2 → N

(i, j) 7→
{

Form program P by replacing each R in Pi

with Pj and return [P]

For instance, the following program is sub,

begin

X3:=0 ; {this will be the output program}

while X1<>0 do {while there are symbols in the}

begin {input program...}

X4:=head(X1) ;

if X4<>’R’ then X3:=X3||X4 {pass along symbol}

else X3:=X3||X2 ; {insert Pj}

X1:=tail(X1)

end ;

X1:=X3

end

Math 688: Theory of Computability and Complexity 3

Next we define a function

ren : N2 → N

(i, k) 7→

Returns [P] where P is the program result-
ing from renaming all variables Xj in Pi,
except X1, to X(j+k-1).

That is,

X1 7→ X1

X2 7→ X(k + 1)

X3 7→ X(k + 2)
...

It would be difficult to give an explicit while-program for this function, how-
ever the following description is precise. Scan Pi looking for the symbol X.
For each non-X symbol, simply output the symbol unchanged. If X is found,
collect into a string α the unbroken string of digits following X and output
X followed by the string β derived from α as follows. If α is empty or is the
string ’1’, then β = α. Else convert α to integer, add k − 1 to this integer,
and β is the string representation of the sum.

As an example, if the factorial function defined above is taken as the
recursion kernel,

sub([RK], ren([RK], 2))

would be,

begin

if X1=0 then X1:=1

else begin

X2:=X1; X1:= pred(X1);

begin

if X1:=0 then X1:=1

else begin

X3:=X1; X1:=pred(X1) ;

R;

X1:=X3*X1

Math 688: Theory of Computability and Complexity 4

end

end;

X1:=X2*X1

end

end

This is not a valid while-program since R is semantically undefined. We
correct that problem by simply causing the “call” to R loop indefinitely.

Let [⊥] by the index of some empty function. We intend to remove all
references to R by substitution in [⊥]. Returning to the factorial example,

sub([RK], [⊥]) yeilds f1 =

{
1 n = 0
⊥ else,

sub(sub([RK], ren([RK], 2)), [⊥]) yeilds f2 =

{
1 n = 0, 1
⊥ else,

...

Or in general,
f0 ≤ f1 ≤ f2 ≤ . . . ≤ F

where f0 = ⊥, by convention, and F is the “limit” function of the sequence.
It is the recursive function we seek, defined everywhere in the domain by an
ever-expanding sequence of functions defined on larger and larger portions of
the domain. We need to make the definition of a limit function precise and
then show that it is while-program computable.

Interlude on Posets

Recall that a poset {S,≥} is a set S with a reflexive, anti-symmetric, transi-
tive relation ≥. Our most important example for this article is the poset of
partial functions by extension ordering. We most prove that this is a poset.

Theorem 1 For any partial function f , f ≥ f . If f and g are partial
functions and f ≥ g and g ≥ f , then f = g. If f , g and h are partial
functions, and f ≥ g and g ≥ h, then f ≥ h.

The proof is an exercise in the definition of extension ordering.
Posets can have two operations, the meet and the join. The meet of two

elements a and b is the greatest lower bound of a and b. That is, it is an

Math 688: Theory of Computability and Complexity 5

element c such that c ≤ a, c ≤ b and it is the greatest such element. It is not
necessary for a meet to exist, that depends on the particular poset. If such a
c does exist, one writes c = a∧ b. In the poset of partial functions, given any
two partial functions, their meet always exists, see the related problem on
the midterm. However, the least upper bound of two functions is generally
not definable. For instance, if f and g are two distinct total functions then
the existence of any h such that h ≥ f and h ≥ g would force f = g,
contradicting our assumption. However, if f ≤ g then the least upper bound
does exist and is equal to g. Proof: f ≤ g and g ≤ g so g is an upper bound,
but if h is also an upper bound then h ≥ g. So g is the least upper bound.
Then g is called the join of f and g and is written g = f ∨ g.

Not only are finite joins definable if the two functions are compatible in
extension ordering, so are infinite joins.

Theorem 2 Let F = { f1, f2, f3, . . . } be a perhaps infinite family of partial
functions such that for any integers i and j for which i ≤ j then fi ≤ fj.
Then a unique least upper bound of the family exists and is written,∨

i

fi = F

Proof: We define a function F and show that it is the least upper bound
of the family F .

F (n) =

{
fi(n) fi(n) exists for some i
⊥ for no i is fi(n) defined.

The function F is well-defined: either fi(n) is defined for some i or for no
i. If it is defined for more than one i, the value at n agrees. It is necessary
to show that for all i, F ≥ fi. Suppose fi(n) is defined. Then from the
definition of F , F (n) is defined and F (n) = fi(n). So F ≥ fi for any i. It is
also necessary to show that if G ≥ fi for all i, then G ≥ F . Suppose F (n) is
defined. Then fi(n) is defined for some i. Because G ≥ fi, G(n) is defined
as well. And G(n) = fi(n) = F (n). So G ≥ F . 2

Examples

The integers with the usual ordering is a poset. A finite meet always exists,

a ∧ b = min(a, b),

Math 688: Theory of Computability and Complexity 6

as does a finite join,
a ∨ b = max(a, b).

However an infinite join does not always exist even if it is of a family
{ a1, a2, . . . } for which i ≤ j implies ai ≤ aj. However, the set of integers
with a new element called infinity does always have infinite joins,∨

i

ai =

{
maxi{ai} if there is a finite such maximum
∞ if the ai are unbounded

Infinite joins do not always exist for the poset of the rationals with usual
size ordering. A sequence of rationals can be made to converge on an irra-
tional, say pi or the square root of 2. However, a bounded set of reals does
always have a least upper bound and this is an important property of the
reals. For instance, a circle can be approximated by a series of inscribed
polygons, each approximating the circle more closely than the previous. The
areas of these polygons form an increasing, bounded sequence a1, a2, . . . whose
least upper bound is said to be the area of the circle.

In the same way, if f0 ≤ f2 ≤ f2 ≤ . . . is the sequence of functions
approximating the recursive function F , we want to show that F is the least
upper bound of the fi. Thinking about the meaning of recursion, a recursive
program is defined at input n if and only if after a finite number of calls to
itself the processing of input n reaches a level where the calculation can be
performed with no further recursion. That is, if and only if there exists and
i for which fi(n) is defined. And this is exactly the definition if F = ∨ifi.

Therefore, to prove that recursion is no more powerful than while-programs
we need to show that given a certain sequence of functions computable by
while-programs, their join is also computable by while-programs. It is not
enough just that this sequence is ascending, in the sense i ≤ j implies fi ≤ fj.
Because any function is the least upper bound of a set of functions with fi-
nite but increasing domain, and any function of finite domain is computable.
We shall show that under the hypothesis that the sequence of functions is
effectively enumerable, then the join is computable.

Main Theorem and Application

In this section the technique of dovetailed computation is used to prove the
following theorem. The close of this section will argue its relevance for the
major result of this article.

Math 688: Theory of Computability and Complexity 7

Theorem 3 Let F = { f1, f2, . . . } be an effectively enumerable sequence of
computable functions such that i ≤ j implies fi ≤ fj. Then ∨ifi is com-
putable.

Proof: Recall from KMA that there exists a universal while-program
for unary functions,

Φ(x, y) = fx(y).

The proof was constructive, demonstrating a while-program which calculated
for any pair of integers x, y the output of program Px on input y. The code
can be modified to form a new function Φ(x, y, z) such that on input triple
(x, y, z) the code:

• simulates Px(y) for z steps;

• if the simulated program halts on or before z steps, a special haltflag
is set true, else the flag is false;

• in either case the program halts and the pair (X1, haltflag) is considered
the output.

Because the family F is effectively enumerable, let ee : N → N be a total
function for which fi = Pee(i). Our aim is to use dovetail through all pairs of
integers, (i, j), running the i-th program for j steps. To to this, let τ : N2 →
N be a computable bijection and π1, π2 : N → N two functions “inverting”
τ in the sense that,

i = τ(π1(i), π2(i)).

Then we shall run all programs for all number steps using the following
program,

begin

i:=0;

haltflag:=false;

while not haltflag do begin

j:=ee(pi1(i));

N:=pi2(i);

Phi(j,X1,N);

i:=succ(i);

end

end

Math 688: Theory of Computability and Complexity 8

If there is any program Pj which halts on x1, it does so in N steps. So for the
appropriate i, haltflag will be set true and X1 will have the proper output
for having computed Pj(x1). 2

Theorem 4 Recursive programs are computable by while-programs.

Proof: It only remains to show that the sequence of functions whose limit
defines the recursive function is effectively enumerable. The enumerating
program is,

begin

if X1=0 then X1:=#B

else begin

ktot:=k;

r:=#RK;

while x1>1 do

begin

r:=sub(r,ren(#RK,ktot));

ktot:=ktot+k;

X1:=pred(X1)

end;

X1:=sub(r,#B)

end

end

Where #B is [⊥], #RK is [RK] and k is the largest integer such that Xk appears
in the recursive kernel RK. 2

