
Quantum Circuit Complexity*

Andrew Chi-Chih Yao
Department of Computer Science

Princeton University
Princeton, New Jersey 08544

Abstract We propose a complexity model of

quantum circuits analogous to the standard (acyclic)
Boolean circuit model. It is shown that any function
computable in polynomial time by a quantum Tur-

ing machine has a polynomial-size quantum circuit.

This result also enables us to construct a universal

quantum computer which can simulate, with a poly-

nomial factor slowdown, a broader class of quantum
machines than that considered by Bernstein and Vazi-

rani [BV93], thus answering an open question raised
in [BV93]. We also develop a theory of quantum com-

munication complexity, and use it as a tool to prove

that the majority function does not have a linear-size

quantum formula.

1 Introduction

One of the most intriguing questions in computa-

tion theroy (see e.g. Feynman [Fe82]) is whether com-

puting devices based on quantum theory can perform

computations faster than the standard Turing ma-

chines. Deutsch proposed a Turing-like model [De851

for quantum computations, and constructed a univer-

sal quantum computer that can simulate any given

quantum machine (but with a possible exponential

slowdown). He subsequently considered a network-

like model, called quantum computational networks,

and established some of their basic properties [De89].

His discussions, however, centered mostly on the com-

*This research was supported in part by the National Sci-
ence Foundation under Grant CCR-9314041.

putability issue without regard to the complexity (i.e.

cost) issue.

A significant step towards better understanding

the complexity issue in the quantum Turing model

was taken by Bernstein and Vazirani [BV93], who

constructed an e f ic ien t universal quantum computer

which can simulate a large class of quantum Turing

machines with only a polynomial factor slowdown.

In classical computation, Boolean circuit complexity

has provided an important alternative framework than

Turing complexity. It is thus of interest to develop

an analogous quantum model to address the question

whether quantum devices can perform computations

faster than the classical Boolean devices.

A natural place to start is the framework of quan-

tum computational networks as discussed in [De89];
these networks may be viewed as the quantum ana-

log of conventional logical circuits (with feedback). In

this paper, we single out the subclass of acyclic net-

works, and develop a complexity theory of quantum
circuits analogous to the standard (acyclic) Boolean
circuit model. We show that any function computable

in polynomial time by a quantum Turing machine

has a polynomial-size quantum circuit. This result,

somewhat unexpectedly, also allows us to construct

a universal quantum computer which can simulate,

with a polynomial factor slowdown, a broader class of

quantum machines than that considered by Bernstein

and Vazirani [BV93], thus answering an open question

raised in [BV93]. We also develop a theory of quan-

0272-542&93 $03.00 0 1993 IEEE
352

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on May 12,2023 at 15:35:12 UTC from IEEE Xplore. Restrictions apply.

tum communication complexity, and use it as a tool

to prove that the majority function does not have a
linear-size quantum formula.

For other developments on quantum complexity, see

Berthiaume and Brassard [BB92] and Jozsa [Jo91].

Qquantum effects have also been studied in the con-

text of cryptographic protocols by Wiesner, Bennett,

Brassard, CrCpeau, and others; for more information

on this subject, see [Br93] for an up-to-date survey

and the references in the recent paper [BCJL93]. For

work in quantum systems from the perspective of in-
formation theory, see for example, Kholevo [Kh73] and

Schumacher [SchuSO] .

2 Quantum Boolean Circuits

In Deutsch [De89], a quantum computation model

different from that of quantum Turing machines was
introduced. This is the quantum analog to the clas-

sical sequential logical circuits. In essence, some set

of elementary gates is chosen as a basis, where each

elementary gate is some t-input t-output device spec-
ified by a 2' x 2' unitary matrix U . The function

of the gate needs to be understood in the context of
quantum computation (see [De89]). We summarize it

briefly. Let C d denote the vector space of d-tuples

of complex numbers, equipped with an inner product

< U, ZI >= Cllild urvi for U, ZI E C d . The length of a

vector U is given by (< U , U >) l I 2 . We say that U , v are

orthogonal if < U , v >= 0. Let d = 2'. Identify each of

the d natural unit vectors (those with a single 1 in one

component and 0 in all other components) with one

of the elements in (0,l)'. The matrix U transforms
any vector U E Cd into another vector U' as follows.

For an input a = Ci.Eio,l)t ci. 2, the output is given

by /? = Ci.E(O,llt~i. U Z , ~ 5. In the above formulas,

5,G are interpreted as unit vectors in C d (and not as

an e-tuple of numbers), and multiplications (by con-

stants) and summations are with respect to operations

in the vector space C d . By definition, a unitary ma-

trix transforms mutually orthogonal unit vectors into

mutually orthogonal unit vectors.

A computational network is composed of elemen-

tary gates connected together by wires, with suitably

chosen time delays as in the classical sequential cir-

cuits. The network has a set of external input wires

and output wires. A computation is carried out by set-

ting some of the input wires to variables, repetitions

allowed, q , 2 2 , . . . , tn (the rest set to constants 0, 1),
and designate some of the output wires as containing

the output variables y1, y2, . . . , ym to be sampled at a

specified time. We will not give a detailed illustration

of how such networks function, since we are mainly

interested in a restricted class of networks which are

analogs of acyclic Boolean circuits. From now on, by

circuits we mean acyclic circuits.

Let 8 , denote the set of all m-input m-output

quantum gates. Deutsch showed [De891 that, for

n 2 3, any unitary transformation in C2" (as induced

by n Boolean variables) can be computed by a com-

putational network using as as a basis, and with only

n wires (initially each wire contains one distinct input
variable). It turns out that one can show that the feed-
back loops can be avoided (as in classical sequential

circuits), but at the price of adding additional wires

(called dummy wires) which are set to constants (0 or

1) initially and take on the same constant values again

at the output end. Note that the same phenomenon

arose in reversible computing networks for the classi-

cal Boolean computation (Toffoli [To81]).

Theorem 1 Let n 2 1. Any unitary transformation

in in C2" (as induced by n Boolean variables) can be

computed by a quantum Boolean circuit using 2O("')

elementary gates from Q3, and with O(n) auxiliary

wires.

We use a3 as the basis, and consider quantum

353

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on May 12,2023 at 15:35:12 UTC from IEEE Xplore. Restrictions apply.

Boolean circuits built from these gates. Since the cir-

cuits are acyclic, we don't need to specify the delay

time for various gates and wires. For any quantum
Boolean circuit K , with input variables q , ~ , . . . ,2,
and output variables y1, y2,. . . , ym (which is a sub-
set of output wires), we associate with each input i E

(0, 1)" a probability distribution pi. over (0, l } m . The

probability is defined in the normal way for quantum

computations. For input k, write the final quantum

state v corresponding to all the output wires (not just
the output variables y i) as v = & E (o , l l m vi, where

vi is the projection of v when the output variables are

set to the values i . Then p ~ (i) is equal to the square

of the length l l ~ p 1 1 ~ . We say that { p p I E E {0,1}"} is

the distribution generated by K .

The case m = 1 is of special interest, in which case

the distribution is specified by a real number p i =
pi.(l) for each i E (0, 1)". We say that a string i E
{0,1}" is accepted by the circuit K if p s > 2/3, and

rejected by K if pi. < 1/3. If every i E {0,1}" is

either accepted or rejected, we say that K computes

the language {i I i is accepted by K }.

The site of a quantum Boolean circuit is the num-

ber of elementary gates in the circuit, and the depth is

the maximum length of any (directed) path from any
input wire to any output wire. A circuit is a formula if

every input wire is connected to a unique output vari-

able y i , and that the path connecting them is unique.

Note that due to the unitary nature of quantum com-

putation, the entire circuit cannot look like a forest.

The definition here expresses the condition that, when

one looks at only the part of circuit connected by di-

rected paths to output variables, one sees a forest.

(See Figure 1 .)

For any language L E. (0, l}", let C g (L) , D g (L) be

the minimum circuit size, circuit depth for any quan-

tum circuit computing L. Let F g (L) be the minimum

size of any quantum formula for computing L.

To illustrate how elementary gates from $3 trans-

form inputs, we consider an example. For each real
number A , let DX denote the 3-input 3-output elemen-

tary gate, with its associated unitary matrix given by

where ci, = 1 if i = j and 0 otherwise, heel =
cos(7rX/2) if c + c' is even and -isin(?rA/2) if c + c'

is odd. (See Figure 2 for the matrix explicitly exihib-

ited.) This family of gates was introduced by Deutsch

[De891 as an extension of the Toffoli gates (Toffoli

[To81]) for classical Boolean circuits. Just as Toffoli

gates are complete for reversible (classical) Boolean

circuits, Deutsch showed that the family DX are suffi-
cient to implement all quantum connection networks

in the sense that any single DX with X irrational is

universal in the sense that any computational net-

work can be approximated by networks built from Dx.
For additional interesting members of $3, see Deutsch

[De89].

3 Relationships with Turing Machines

A quantum Boolean circuit K with n input vari-

ables is said to (n, t)-simulate a quantum Turing ma-
chine M , if the family of probability distributions p ~ ,

k E {0,1}" generated by I< is identical to the distribu-

tion of the configuration of M after t steps with i as
input. For definiteness, the configuration is encoded

as a list of the tape symbols from cell -t to t , followed

by the state and the position of the head, all naturally

encoded as binary strings.

Theorem 2 Let M be a quantum Turing machine

and n , t be positive integers. There exists a quan-
tum Boolean circuit K of size p o l y (n , t) that (n , t) -

simulates Q.

Corollary If L E P , then C g (L ,) = O(nk) for

some fixed k. (L , is the set of strings in L of length

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on May 12,2023 at 15:35:12 UTC from IEEE Xplore. Restrictions apply.

This is the quantum analog of the simulation of de-
terministic Turing machines by classical Boolean cir-

cuits (see Savage [Sa72], Schnorr [Schn76], Pippenger

and Fischer [PF79]). The proof for the quantum ver-

sion involves subtler arguments. A sketch of the main

steps in the proof is given in Section 6.

4 A Universal Quantum Turing Ma-
chine

As noted in [BV93], the simulation of quantum
machines is a nontrivial problem, and needs careful

discussions even for the subclass of deterministic re-

versible machines (see [Be731 for discussions of such

machines). In this section, we answer an open ques-

tion about simulating quantum machines raised by

Berstein and Vazirani [BV93]. In [BV93], it was shown

that there is a univeral quantum Turing machine (with

a polynomial slow-down) for the class of quantum Tur-
ing machines in which the read/write head must move

either to the right or to the left at each step. It was

asked whether there is a universal machine with only

a polynomial slow-down when the head is not required

to move. This is an interesting question, as it would

be an uncomfortable situation in which one may pro-

duce quantum machines but cannot execute them as

programs on a general computer efficiently, if the an-

swer turns out to be negative. The next result gives a

positive answer.

In this extended abstract, by quantum Turing ma-
chines we mean one-tape machines with its head al-

lowed to move in each quantum step either to the
right, or to the left, or stay in the same place. (For

a formal specification, see [BV93].) Theorems 1 and

2 can be extended to the standard variations of this

model. (This will be discussed in the complete paper.)

Theorem 3 There exists a universal quantum Turing

machine that can simulate any given quantum Turing

machine with only a polynomial slow-down.

The proof of Theorem 3 uses Theorem 2. Basically,

the universal machine first constructs a quantum cir-

cuit K to simulate the given Turing machine, then

follows the circuit diagram deterministically and uses
quantum steps to simulate computation of successive

elementary gates. One complication is that since a

universal machine has only a finite set of transitions,

one needs to perform approximate computations in the
same way as was done in [BV93]. We omit the details

in this extended abstract.

5 Quantum Communication Complex-
ity

Interacting quantum machines can be defined in

several ways. We will only introduce a special model

here which can be used to prove lower bounds on

circuit complexity. An interacting pair (M I , M z) of
quantum Boolean circuits is a partition of a quantum

Boolean circuit such that M1 and Mz have disjoint

sets of input variables, and all the output variables
are contained in one side. The communication cost of

(M I , M z) is the number of wires passing between M I
and M2.

Analogous to the standard notion of communica-
tion complexity (see [Ya79]), the quantum communi-

cation complexity of a function f (i , c) is defined to

be the minimum communication cost of any interact-

ing pair of quantum Boolean circuit for computing f
with i, 6 being the respective inputs to M 1 , M z . It
is possible to generalize this concept to other mod-
els, such as the multi-party case with shared variables

(Chandra, Furst and Lipton [CFL83]) and the com-

munication complexity for relations (Karchmer and

Wigderson [KW90]). One can also define quantum

365

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on May 12,2023 at 15:35:12 UTC from IEEE Xplore. Restrictions apply.

communication complexity with no error allowed, or

with quantum help bits, etc. We discuss these matters

further in the complete paper.

The determination of communication complexity is
more difficult in the quantum case, we discuss here

only one result here. It will be applied to prove a
lower bound result about quantum formula size.

Let 5 = (21,2~,...,2n), ij = (yl,Y,,...lYn) be 12-

tuples of Boolean variables. Let f(5,C) = 1 if there

are at least n 1’s among the 2n arguments, and 0 oth-

erwise.

Theorem 4 The quantum communication complex-

ity o f f is > Q(log1ogn).

A proof of Theorem 4 is given in Section 7. Let

MAJ, be the majority function of n variables. We
show that MAJ, have no linear-size quantum formula.

To prove Theorem 5, we reduce the problem to one

of communication complexity (using a Ramsey-type

argument similar to those used by Hodes and Specker

[HS68]), and then apply Theorem 4. We omit the

proofs here.

6 Proof of Theorem 2

Let M be a quantum Turing machine with alphabet
set C, set of states Q , and transitional coeffiecients

6 (q , a, T, q’, a’) with T E {+, 0, -+}; the symbols +, +.

,o are interpreted as moving to the left, to the right,

and staying stationary. As is in the notation of [BV93],
6 is the amplitude of M to change state to q‘, print a’

and move according to T, if the machine is currently

in state q and reading tape symbol a.

We construct a quantum circuit which is the con-

catenation of T identical subcircuits. Each subcircuit,

denoted by K , performs one step of the simulation.

The encoding for the configuration can be chosen

differently from the one specified in Section 3. As

long as it is polynomial-time equivalent to the required

format, one can add an encoding and decoding unit to

the front and back ends of the solution to obtain the

required final network.

For our solution, we use t = 0 (2 + [log,(lQI+ 1)1+
[log, ICll) wires for each of the 2t + 1 cells (numbered

from 0 to 2t instead of from -t to t) . The current val-

ues of the wires for cell i will be denoted by Si, qi, ail

where si E {0 ,1 ,2 ,3} (two wires), pi E Q U (0)
([log,(IQI + 1)1 wires) and ai E C ([log, IC11 wires).

The variable si takes on value 0 when the head is not

at cell i, value 1 when the head is at cell i and has not

been actively invoked in the simulation, and 2 when
the head has been used in the simulation and is now

at cell i.

The subcircuit K is constructed as follows. The

basic building block is a circuit G with 3t wires. We

build A‘ by cascading 2t - 1 units of G, each shifting

right by t wires, and at the end, adding a circuit I
whose function is to change all si with values 2 to 1

and 1 to 2. Denote the i-th unit of G by Gi. (See

Figure 3.)

Clearly, I is unitary, and can be constructed with

O (t) elementary gates. We now describe how to con-

struct the unitary G.

The central idea is as follows. Think of G as having

3t inputs describing the contents of three consecutive

cells (including the information whether the head is

there). We want G to transform the contents of these

cells if the head is at the middle cell and the simu-

lated step has not occurred (i.e. sa = 1 if cell i is the

middle cell), according to how the simulated machine
would transform the contents. The obvious first try

for designing G would be to let G do nothing when

si # 1. This would not work since some linear combi-

nations of configurations with s, # 1 can lead to the

356

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on May 12,2023 at 15:35:12 UTC from IEEE Xplore. Restrictions apply.

same output as when si = 1, and G would not be uni-

tary. The idea is for G to leave all the realizable linear

combinations of configurations with si # 1 untouched,

but allowed to alter the values of wires for situations

that do not arise in any computation. This turns out

to give enough freedom for a unitary G to exist (and

constructible).

Let us formalize the above conditions. We write
down the conditions €or the i + 1st unit G (with wires
from cells i - 1, i , i + 1). Let H denote the subspace

of C2” spanned by three types of vectors:

(i) Isi-1, qi-1, ai-1, si, qi, ai si+l, qi+l, ai+l >
where si # 1 and none of si-1, s i , si+l is equal to 2;

(ii) o ~ , - ~ , ~ , - ~ , ~ , , ~ , + ~ for all possible values of these
parameters, where

uq,-~,a,-~,a’,a,-,,a, =

~(q i -2 , ai-2, +, q’, a’)12, q‘, ai-1,0,0, ai, 070, ai+l >
Q’

Type (i) vectors and their linear combinations are

distinct from, and in fact orthogonal to, any possi-

ble resulted vector when the Turing machine takes a

step with head a t cell i. Type (ii) vectors are vec-

tors resulted when the Turing machine takes a step
with head at cell i - 1 and, afterwards, with the head

resting at cell i - 1 or i . Type (iii) vectors are vec-

tors resulted when the Turing machine takes a step

with head at cell i - 2 and with the head resting at

cell i - 1. From the viewpoint of G, the only input

configurations are linear combinations of two kinds of

vectors: those with si = 1, and those from H . Clearly,

these two kinds of vectors are orthogonal. The next

lemma states the crucial property that, for an input w

with si = 1 (a vector of the former kind), the execu-

tion of one step of the simulated Turing machine takes

w to w’ which will still be orthogonal to H . Write w

IO,@, ai-1,1, qi, ai , 090, a i+ l >.
Lemma 1 For all possible values of ~ i - 1 ~ q i , aj, aj+l,

the following vectors are mutually orthogonal unit vec-

tors and are orthogonal to the subspace H :

6(qi, ai, +, q’, ~’112, q’, ai-1,0,0, a’, 0,0, ai+ l >
q’,a’

+ 6(qi,ai,o,q’,a’)10,0,ai-1,2,q’,a’,O,B,ai+l >
q’,a’

+ S(qi, ai, +, ~ ’ 7 .’)IO, 0, a i - l j o , ~ , a’, 21 q’, ai+l > .
q’+’

Proof By a careful check of the unitarity con-

straints on the quantum Turing machine M . Details

omitted from this abstract. 0

We put the following requirements on G:
(a) For each o E H , G(v) = o.

(b) GI01 0, ai-1,1, qi, ai, 078, ai+^ >=

S (q i , ai , q’, ~ ‘112 , q’, ai-1,0, 0, a’, 0,0, ai+l >
d , a ‘

+ 6(q i , ai, 0, Q’, a’)10, 0, ~i-192, q’, 0,0, ai+l >
8’ ,a’

+ 6(qi, ai, -1 q’tal)lO, 0, a i - l jo , 0, a‘, 2, q’, ai+l > .
q‘,a’

Lemma 2 There exists a unitary G satisfying the

above requirements. Furthermore, the matrix entries

of G are rational functions of entries of transitional

coefficients of the simulated Turing machine.
Proof The requirements state that all the vectors

in the subspace H remain fixed by G, and that a set

of unit vectors mutually orthogonal and orthogonal to

H are transformed by G into unit vectors that are mu-

tually orthogonal and orthogonal to H . Such G exists

and can be found by solving a set of linear equations.
0

By Theorem 1, G can be implemented as a quan-

tum Boolean circuit using 2O(l) elementary gates. We

357

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on May 12,2023 at 15:35:12 UTC from IEEE Xplore. Restrictions apply.

have thus specified how K is built as an O(t2°('))-size

quantum Boolean circuit. It remains to prove that K
correctly simulates one step of the operation of the
given quantum Turing machine M .

I t suffices to prove that K correctly simulates one

step of M when the head is at cell i for 1 5 .i 5
2t - 1. For each Turing machine (pure) configura-

tion $, let v($) denote the corresponding unit vector

b o , qo , Q o , s1,q1, a11 . . . , S Z t , qzt, Qzt > E C(2t+1)L.

Let $0 be any (pure) configuration of M with head
at some cell 1 5 i 5 2t - 1. Let $0 --+ & c ~ $ after

one step of execution by M . We show that, for input

~($0) to K , the output of K is c+v($) .

Let ~($0) = ko, k l , . . . kZf-1, where ki is the vector

corresponding to the wire values in K after in c2(3 t+1) t

Gi has just been passed by. We would like to show that

kzt-l is essentially equal to c+v($) (except that

the values of sj would be 2 when they should be 1).

Clearly, for j = 1,2 , . . . , i - 1 the 3-cell segments

input to Gj belongs to H (in fact type (i)), and hence

no modifications of wire values take place. Thus, kj =
ko for 0 5 j 5 i- 1. At G , , since si = 1, k; is obtained

from k;-1 according to item (b) in the requirements
for G (see the paragraph before Lemma 2). This is

almost &, c+v($) , except that the values of sj would

be 2 when they should be 1. We only need to show

that this vector remains the same through the rest of

the G units (i.e. Gi+l , . . . ,Gz t -1) .

At Gi+l, we can calculate ki+l as follows. Write

k, = k: + k y , where k: is the portion with the head at
cell i - 1 and ky is the portion with the head at cell i
and i + 1. We can examine how Gi+l modifies k: and

ky separately and add the resulted vectors. It is easy

to see that the 3-cell segment of k: input to Gi+l is a

vector in H (in fact a linear combination of vectors of

type (i)), and hence k: will not be changed by Gi+l. It
is also easy to see that the 3-cell segment of ky input to

Gi+2 is a vector in H of type (ii), and hence k? will also

358

not be changed by Gi+l. We conclude the ki+l = ki.
A similar argument shows that G,+2 does not change
its input in any way and hence ki+z = ki+l = ki.

Note that ki is a linear combination of vectors of the
z(at+i)c

form l S a , q o , a o , ~ i , q i , a i , . . . , s z t , q 2 t , ~ 2 ~) >E C
with sj = 2 for some j E {i - 1, i, i + 1) and all other

s, = 0. It follows that, by induction, each Gj (j >
i + 2) sees only 3-cell segments belonging to H (type

(i) vectors), and hence kj = ki . This completes the

proof of Theorem 2.

7 Proof of Theorem 4

Let (M I , M2) be a pair of interacting quantum
Boolean circuit that computes f with error probabil-

ity less than 1/3. We will show that t 2 R(loglogn),

where t is the number of wires crossing between M I
and Mz.

Without loss of generality, we can assume that the

t cross wires go alternately from one machine to the

other, with the first wire being from M I to M z , and

the last from M2 to M I . The last wire carries the

result of the computation, with the answer being 1 if

the the wire is in state 11 >. Let A = (10 >,I1 >}.
By definition, A is a computational basis for the signal

space of every wire, and the Hilbert space of the circuit

is the direct product of these signal spaces.

Let M1 and M2 contain k + 1 and f2 wires, respec-

tively. The Hilbert space of the circuit can be regarded

as the direct product of three Hilbert spaces H I , Ha,
and HB, where H1 and Hz come from the wires in M I
and M2, and H s is the signal space of one wire which

goes from M1 to Mz and back t times. Clearly, H1 and

Hz have dimensions 2k and 2', and H3 has dimension

2.

Let e' = (e l , e z 1 . . . , et) E At, where ei denotes the
state of the i-th cross wire. For any input t E (0, l)"

to M I , let a , , ~ E H1 be the output state of M1 ob-

tained from the input state as follows: at cross wire #

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on May 12,2023 at 15:35:12 UTC from IEEE Xplore. Restrictions apply.

1, project the current state sh E H1 x H3 to SI E H I

by restricting the component of sb in H3 to e l ; then

a t cross wire # 2, with s1 having evolved within M1

to state si, force the # 2 cross wire state to be e,,

i.e. make the state of the circuit on the M1 side

s2 = si 8 e,; following the circuit to the point of cross

wire # 3, project the current state sk E H I x H3 (s2
having evolved into si) to s3 E H1 by restricting the
component of s& in H3 to ea; + . ., etc. In a similar way,

for any y E (0, l}nl let by,b E H2 be the output state
of M2 obtained by the circuit from input y.

It is clear that, for input (z,y) to the circuit

(M I , M,), the output state is equal to

a , , t 8 b y , t @ e t .
Z=(el , . , . ,et)EA‘

Thus, the probability of the circuit accepting input

(X,Y> is

P x , y = II c a,,; 63 by, t l12,
.?E E

where E = A*-’ x (I1 >}.
The idea of the proof is to show that, if t is not large

enough, then there will be two y, y‘ E {0,1}” with

different number of 1’s in them, say nl and n2, but

with similarfeatures in by,bl byl,b such that P,,~ M P , , ~ I

for all c. This leads to a contradiction if we select an

c with its number of 1’s between n - nl and n - n2,

since the circuit should accept exactly one of the pairs

(I, y), (2,y‘). We now make it precise.

For every e, et E E, let &,e ,e f =< a,,,, >, and

gy,e ,e l =< by,e , by,e’ >.
Lemma 3 ~ z , y = Ce,etEE &,e,efby,e ,e j for all 11 Y-

Proof Omitted. O

For each y, define the feature vector of y by

vy = ((m, m’) I e, e‘ E E),

where m = LRe(by,e,e~)(log2n)3J and mt =
LIm(6y,e,e1)(10g, n)3J. Clearly, there are at most
(((log, 7 ~) ~) + 1)2Ea distinct possible feature vectors.

Assume that t < (log, log, n - log, log, log2 n -
10)/2. We will derive a contradiction (for large n).

Clearly, E = 2t-1 < (log, n/2010g2 log, n)lI2. Thus,
there are at most ((log, n)3 + 1)2Ea < n different fea-

ture vectors. It follows that there are two y,y‘ with

different number of l’s, say nl > n2, but with vy = vyl.

Using Lemma 3, we have for any I

Let I E (0,1}” be a string with its number of 1’s being

in the interval [n - n l , n - 7121. Then one of P , , ~ , P , , ~ I

should be less than 1/3 and the other greater than 213,

since exactly one of the pairs (I, y), (2, y’) is accepted

by the circuit. This is a contradiction. This proves
the theorem.

8 Conclusions

We have initiated a study of Boolean circuit and

communication complexity in the quantum computa-

tion context. It is hoped that this line of investigation

leads to interesting new mathematical questions, and

perhaps sheds light on other aspects of quantum com-

putation such as the quantum Turing machine model.

The results presented here seem to be encouraging.

References
[Be731 C. Bennett, “Logical reversibility of com-

putation,” IBM J. Res. Develop. 17 (1973),

525-532.

[BB92] A. Berthiaume and G. Brassard, “The

quantum challenge to structural complex-

ity theory,’’ Proceedings of 7th IEEE Con-

359

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on May 12,2023 at 15:35:12 UTC from IEEE Xplore. Restrictions apply.

[BV93]

[Br93]

ference on Structure in Complexity Theory,
1992.

E. Bernstein and U. Vazirani, “Quantum

complexity theory,” Proceedings of 1993

ACM Symposium on Theory of Computing,

1993.

G. Brassard, “Cryptology column - quan-
tum cryptology: a bibliography,” Sigact

News, vol. 24, no. 3, 1993, 16-20.

[BCJL93] G. Brassard, C. CrGpeau, R. Jozsa, and

[CFL83]

[De851

[De891

[Fe821

[HS68]

[Jog11

D. Langlois, “A quantum bit commitment

scheme provably unbreakable by both par-

ties,” Proceedings of 1993 IEEE Symposivm
on Foundations of Computer Science, 1993.

A. Chandra, M. Furst, and R. Lipton,

“Multi-party protocols,” Proceedings of

1983 ACM Symposium on The0 ry of Com-

puting (1983), 94-99.

D. Deutsch, “Quantum theory, the Church-

Turing principle and the universal quantum
computer,” Proceedings of the Royal Society
of London, Volume A400 (1985), 97-117.

D. Deutsch, “Quantum computational net-

works,” Proceedings of the Royal Society of

London, Volume A425 (1989), 73-90.

R. Feynman, “Simulating physics with com-
puters,” International Journal of Theoreti-
cal Physics 21 (1982), 467-488.

L. Hodes and E. Specker, “Lengths of for-
mulas and elimination of quantifiers I,”

in Contributions t o Mathematical Logic,
edited by H . Schmidt, K Schutte and H.
Thiele, North-Holland (1968), 175-188.

R. Jozsa, “Characterizing classes of func-

tions computable by quantum parallelism,”

[KW90]

[Kh73]

[PF79]

[Sa721

[Schn76]

[SchuSO]

[To8 11

Fa791

Proceedings of the Royal Society of London
A435 (1991), 563-574.

M. Karchmer and A. Wigderson, “Mono-

tone circuits for connectivity require super-

logarithmic depth,” SIAM Journal on Dis-
crete Mathematics 3 (1990), 255-265.

A. Kholevo, “Bounds for the quantity of in-
formation transmitted by a quantum com-

munication channel,” Problemy Peredachi

Informatsii 9 (1973), 3-11. English transla-

tion of the journal by IEEE under the title

Problems of Information Transfer.

N. Pippenger and M. Fischer, “Relations

among complexity measures,” Journal of
ACM26 (1979), 361-381.

J . Savage, “Computational work and time

on finite functions,” Journal of ACM 19

(1972), 660-674.

C. Schnorr, “The network complexity and

Turing machine complexity of finite func-
tions,” Acta Informatica 7 (1976), 95-107.

B. Schumacher, “Information from quan-

tum measurements,” in Complexity, En-

tropy, and the Physics of Information,

Santa Fe Institute Studies in the Sciences

of Complexity, Volume VIII, edited by W.

Zurek, Addison-Wesley, 1990, 29-38.

T . Toffoli, “Bicontinuous extensions of in-

vertible combinatorial functions,” Mathe-
matical Systems Theory 14 (1981), 13-23.

A. Yao, “Some questions on the complex-

ity of distributive computing,” Proc. 1979

STOC, 1979, 209-213.

360

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on May 12,2023 at 15:35:12 UTC from IEEE Xplore. Restrictions apply.

x, 0 0 1 x,

I 3
~ 1 0 x,

A formula Not a formula

Figure 1 : Quantum circuits

I
I

I
I

7ra
2 2

icos- " sin-

I

7ra
2 2

sin- A icos-

Figure 2: LYk

I

Cell 0 1 2 i

Figure 3: K

. . .

21 . . .

361

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on May 12,2023 at 15:35:12 UTC from IEEE Xplore. Restrictions apply.

