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Abstract. The quantum model of computation is a model, analogous to the probabilistic Turing
machine (PTM), in which the normal laws of chance are replaced by those obeyed by particles on
a quantum mechanical scale, rather than the rules familiar to us from the macroscopic world. We
present here a problem of distinguishing between two fairly natural classes of functions, which can
provably be solved exponentially faster in the quantum model than in the classical probabilistic
one, when the function is given as an oracle drawn equiprobably from the uniform distribution on
either class. We thus offer compelling evidence that the quantum model may have significantly more
complexity theoretic power than the PTM. In fact, drawing on this work, Shor has recently developed
remarkable new quantum polynomial-time algorithms for the discrete logarithm and integer factoring
problems.
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1. Introduction. You have nothing to do but mention the quantum theory, and
people will take your voice for the voice of science, and believe anything.

—Bernard Shaw, Geneva (1938)

The suggestion that the computational power of quantum mechanical processes
might be beyond that of traditional computation models was first raised by Feynman
[Fey82]. Benioff [Beni82] had already determined that such processes were at least as
powerful as Turing machines (TMs); Feynman asked in turn whether such quantum
processes could in general be efficiently simulated on a traditional computer. He also
identified some reasons why the task appears difficult and pointed out that a “quan-
tum computer” might be imagined that could perform such simulations efficiently.
His ideas were elaborated on by Deutsch [Deu85], who proposed that such machines,
using quantum mechanical processes, might be able to perform computations that
“classical” computing devices (those that do not exploit quantum mechanical effects)
can only perform very inefficiently. To that end, he developed a (theoretically) physi-
cally realizable model for the “quantum computer” that he conjectured might be more
efficient than a classical TM for certain types of computations.

Since the construction of such a computer is beyond the realm of present technol-
ogy, and would require overcoming a number of daunting practical barriers, it is worth
asking first whether the proposed model even theoretically offers any substantial com-
putational benefits over the classical TM model. The first hint of such a possibility
was given by Deutsch and Jozsa [DJ92], who presented a simple “promise problem”
that can be solved efficiently without error on Deutsch’s quantum computer but that
requires exhaustive search to solve deterministically without error in a classical set-
ting. Berthiaume and Brassard [BB92] recast this problem in complexity theoretic
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ON THE POWER OF QUANTUM COMPUTATION 1475

terms, constructing an oracle relative to which the quantum computer is exponen-
tially more efficient than any classical (zero-error) PTM. In [BB93], they exhibited a
similar separation for nondeterministic (zero-error) TMs.

Unfortunately, the problems explored in [BB92, BB93] are all efficiently solved by
a (classical) PTM with exponentially small error probability. However, Bernstein and
Vazirani [BV93] subsequently constructed an oracle which produces a superpolyno-
mial relativized separation between the quantum and (classical) probabilistic models.
They also gave the first efficient construction of a universal quantum computer which
can simulate any quantum computer (as defined by Deutsch, subject to a slight con-
straint later removed in [Yao93]) with only polynomial overhead (Deutsch’s universal
quantum computer was subject to exponential slowdown).

In this paper,1 we present an expected polynomial-time algorithm for a quantum
computer that distinguishes between two reasonably natural classes of polynomial-
time computable functions. This task appears computationally difficult in the classical
setting; in particular, if the function is supplied as an oracle, then distinguishing (with
nonnegligible probability) between a random function from one class and a random
member of the other would take exponential time for a classical PTM. (A direct
consequence is an oracle which produces an exponential relativized gap between the
quantum and classical probabilistic models.) Recently Shor [Sho94], drawing on the
general approach presented here and using a number of ingenious new techniques,
has constructed quantum polynomial-time algorithms for the discrete logarithm and
integer factoring problems.

2. The quantum computation model.

2.1. Classical probability versus the quantum model. We can represent
a (classical) probabilistic computation on a TM as a leveled tree, as follows: each
node corresponds to a state of the machine (i.e., a configuration), and each level
represents a step of the computation. The root corresponds to the machine’s starting
configuration, and each other node corresponds to a different configuration reachable
with nonzero probability, in one computation step, from the configuration represented
by its parent node. Each edge, directed from parent to child, is associated with the
probability that the computation follows that edge to the child node’s configuration
once reaching the parent node’s configuration. Obviously, configurations may be
duplicated across a single level of the tree, as children of different parents, as well as
appear on different levels of the tree; nevertheless we represent each such appearance
by a separate node. Also, we say that any such computation tree is well defined,
meaning that the probabilities on the edges emanating from a parent node, and the
configurations associated with its children, are strictly a function of the configuration
associated with the parent node, regardless of the node’s position in the tree.

Of course, this tree must necessarily conform not only to the constraints set by
the definition of the TM whose computation it represents but also to the laws of
probability. For example, the probability of following a particular path from the root
to a node is simply the product of the probabilities along its edges. Hence we can
associate a probability with each node, corresponding to the probability that that node
is reached in the computation, and equal to the product of the probabilities assigned
to the edges in the path leading to it from the root. Moreover, the probability that
a particular configuration is reached at a certain step i in the computation is simply
the sum of the probabilities of all the nodes corresponding to that configuration at

1 An earlier version of this paper appears in [Sim94].
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1476 DANIEL R. SIMON

level i in the tree. (For example, the probability of a particular final configuration
is the sum of the probabilities of all leaf nodes corresponding to that configuration.)
Finally, the sum of the probabilities of all the configurations at any level of the tree
must always be 1, regardless of the starting configuration. A necessary and sufficient
condition for a well-defined computation tree to always satisfy this constraint is that
the sum of the probabilities on edges leaving any single node always be 1.

A familiar equivalent representation of our well-defined computation, of course,
is the Markov chain, in which a vector of probabilities for each possible configuration
at a given step is multiplied by a fixed matrix to obtain the vector of probabilities of
each configuration at the next step. For example, a space-S(n)-bounded computation
can be represented by a Markov process with 2O(S(n)) states. Such a process can
always be translated into a PTM, as long as (a) it never takes one configuration to
another with nonzero probability unless the second can be obtained from the first via
a single TM operation (i.e., changing the control state, and/or changing the contents
of the cell under the tape head, and/or moving the head position by one cell); and
(b) it assigns probabilities to new configurations consistently for any set of original
configurations in which the control state and the contents of the cell under the tape
head are identical. We say that processes with this property are local; obviously, the
computation of any PTM can be represented as a computation tree which is not only
well defined but also local.

A computation on a quantum Turing machine (QTM) (as described in [Deu85])
can be represented by a similar tree, but the laws of quantum mechanics require that
we make some adjustments to it. Instead of a probability, each edge is associated
with an amplitude. (In general, an amplitude is a complex number with magnitude at
most 1, but it is shown in [BV93] that it is sufficient for complexity theoretic purposes
to consider only real amplitudes in the interval [−1, 1].) As before, the amplitude of
a node is simply the product of the amplitudes of the edges on the path from the
root to that node. The amplitude of a particular configuration at any step in the
computation is simply the sum of the amplitudes of all nodes corresponding to that
configuration at the level in the tree corresponding to that step. In the vector–matrix
representation corresponding to the classical Markov process, a quantum computation
step corresponds to multiplying the vector of amplitudes of all possible configurations
at the current step by a fixed matrix to obtain the vector representing the amplitude
of each configuration in the next step.

Now, the probability of a configuration at any step is the square of its amplitude.
For example, the probability of a particular final configuration is the square of the sum
(not the sum of the squares) of the amplitudes of all leaf nodes corresponding to that
configuration. This way of calculating probability has some remarkable consequences;
for instance, a particular configuration c could correspond to two leaf nodes with am-
plitudes α and −α, respectively, and the probability of c being the final configuration
would therefore be zero. Yet the parent nodes of these two nodes might both have
nonzero probability. In fact, the computation would produce c with probability α2 if
only the configuration of one of the leaf nodes were in some way different. Similarly,
if both leaf nodes had amplitude α, then the probability of c being the final config-
uration would be, not 2α2, but rather 4α2—that is, more than twice the probability
we would obtain if either of the nodes corresponded to a different configuration. This
mutual influence between different branches of the computation is called interference,
and it is the reason why quantum computation is conjectured to be more powerful, in
a complexity theoretic sense, than classical probabilistic computation. (It also means
that probability is a rather abstract notion for a nonleaf node, with little intuitive

D
ow

nl
oa

de
d 

10
/0

6/
24

 to
 1

08
.8

3.
67

.5
7 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



ON THE POWER OF QUANTUM COMPUTATION 1477

connection to the ultimate probability of any particular computation result.)
However, even a quantum computation tree must obey the property that the sum

of the probabilities of configurations at any level must always equal 1. The choice
of amplitudes on the edges leading from a node to its children must therefore be re-
stricted so as to ensure that this condition is always obeyed, regardless of the starting
configuration. Now, it turns out that it is not sufficient simply to require that for
each node the sum of the squares of the amplitudes on edges leading to its children
be 1. In fact, even deterministic (“classical”) computation steps, in which a single
outgoing edge to a single child has amplitude 1, can violate this constraint by causing
previously different configurations in different branches of the tree to become identi-
cal. Such an event might change the pattern of interference, thereby altering the sum
of the probabilities of the configurations.

Computation steps which never violate this constraint are called unitary, because
they are equivalent to multiplying the vector of amplitudes of all possible configu-
rations by a unitary matrix. (Recall that a unitary matrix is one whose inverse is
its conjugate transpose; when we restrict ourselves to real amplitudes, such a matrix
becomes orthogonal—that is, equal to the inverse of its transpose.) A QTM must
always execute unitary steps; for instance, its deterministic steps must be reversible,
in the sense that the preceding configuration can always be determined given the
current one. (This restriction eliminates the aforementioned problem of distinct con-
figurations suddenly becoming identical.) To be unitary, nonclassical steps must also
be reversible, in the sense that some unitary (nonclassical) step “undoes” the step.
Such “unflipping” of quantum coins is made possible by the counterintuitive effects
of interference, which can cause alternative branches to cancel each other out, leaving
the remaining ones (possibly all leading to an identical outcome) certain.

The QTM model of computation described here is simply a PTM in which the
rules described above replace those of classical probability. (A more formal defini-
tion of an essentially equivalent QTM model can be found in [BV93].) Just as the
computation tree of a classical probabilistic computation is always well defined and
local, with probabilities always summing to 1, the computation tree of a quantum
computation is always well defined, local, and unitary. At each step, the amplitudes
of possible next configurations are determined by the amplitudes of possible current
configurations, according to a fixed, local, unitary transformation representable by a
matrix analogous to the stochastic matrix of a Markov process.

It is important to note that the standard equivalent characterization of a classi-
cal probabilistic computation tree, in which a deterministic machine simply reads a
tape containing prewritten outcomes of independent fair coin tosses, does not appear
to have a counterpart in the quantum model. It is true that an efficient universal
QTM was shown in [BV93] to require only a fixed, standard set of amplitudes for
all its nonclassical steps. However, the reversibility condition guarantees that no new
interference will be introduced once those steps have been completed (say, after all
the “quantum coins” have been tossed), and any remaining computation will thus be
unable to exploit quantum effects. Hence the classical and nonclassical parts of the
quantum computation tree cannot be “teased apart,” as can the deterministic and
probabilistic parts of a classical computation tree, and we must always keep an entire
tree in mind when we deal with quantum computation, rather than assuming we can
just follow a particular (deterministic) branch after some point. We therefore refer
to a quantum computation as resulting, at any one step, in a superposition of all the
branches of its tree simultaneously.
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1478 DANIEL R. SIMON

2.2. Notation and an example. It is useful to have a notation to denote
superpositions (that is, entire levels of a computation tree). We say that at any step
i, the computation is in a superposition of all the configurations |c1〉, . . . , |ck〉 corre-
sponding to nodes that appear in level i of the tree representing the computation, each
|cj〉 having amplitude αj . (Borrowing quantum mechanics notation, we distinguish
symbols representing configurations from those representing amplitudes by placing |〉
brackets around configuration symbols.) An abbreviated notation for this superpo-
sition is

∑
j αj |cj〉; as we shall see, the suggestive addition/summation notation for

superpositions is quite appropriate. A simple example of a unitary quantum step is
the quantum “fair coin flip” performed upon a single bit. It is represented by the
following matrix M :

1√
2

[
1 1
1 −1

]
.

M acts on 2-element column vectors whose top and bottom entries represent the
amplitudes of the states |0〉 and |1〉, respectively. A bit in state |0〉 is transformed
by M into a superposition of |0〉 and |1〉, both with amplitude 1/

√
2. Similarly, a

bit in state |1〉 is transformed into a superposition of |0〉 and |1〉 with amplitude of
magnitude 1/

√
2 in each case, but with the sign, or phase of the amplitude of |1〉 being

negative. In other words, the state |0〉 is transformed into (1/
√

2)|0〉+(1/
√

2)|1〉, and
|1〉 becomes (1/

√
2)|0〉+ (−1/

√
2)|1〉.

It turns out that this transformation is its own inverse. For example, performing
it a second time on a bit that was originally in state |0〉 produces (1/

√
2)((1/

√
2)|0〉+

(1/
√

2)|1〉)+(1/
√

2)((1/
√

2)|0〉+(−1/
√

2)|1〉). Collecting like terms in this expression
(here we see the aptness of the addition/summation notation) allows us to obtain the
amplitude of each distinct configuration, which in this case is 1 for |0〉 and 0 for |1〉.
Similarly, performing this same transformation twice on the initial configuration |1〉
gives us |1〉 (with amplitude 1, and hence probability 1) again.

In a system of n bits, with 2n possible configurations, we can perform such a
transformation on each bit independently in sequence. The matrices representing
these transformations will be of dimension 2n × 2n, of course; their rows, each corre-
sponding to a different configuration, will each have two nonzero entries, taken from
either the top or bottom row of M . Their columns will similarly have two nonzero
entries each, taken from either the left or right column of M . Also, they will all be
unitary, since they each represent a local, unitary transformation.

The result of performing these n different transformations in sequence will be
a superposition of all possible n-bit strings. The amplitude of each string at the
end of the n transformations will have magnitude 2−n/2. As the transformations are
applied in turn, the phase of a resulting configuration is changed when a bit that was
previously a 1 remains a 1 after the transformation is performed. Hence, the phase of
the amplitude of string x is determined by the parity of the dot product of the original
configuration string and x. More precisely, if the string w is the original configuration,
then performing the product transformation composed of these n transformations in
sequence will result in the superposition

2−n/2
∑
x

(−1)w·x|x〉.

This product transformation was introduced in [DJ92] and is referred to in [BV93] as
the Fourier transformation F .
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ON THE POWER OF QUANTUM COMPUTATION 1479

3. Using quantum computation.

3.1. Problem: Is a function invariant under some xor-mask? Suppose
we are given a function f : {0, 1}n → {0, 1}m, with m ≥ n, and we are promised that
either f is one-to-one, or there exists a nontrivial n-bit string s such that for any pair
of distinct inputs x and x′, f(x) and f(x′) are equal if and only if the bits of x and
x′ differ in exactly those positions where the bits of s are 1. We wish to determine
which of these conditions holds for f , and, in the second case, to find s.

Definition 3.1. Given a function f : {0, 1}n → {0, 1}m, with m ≥ n, the
xor-mask invariance of f (XMI(f)) is

• s, if there exists a nontrivial string s of length n such that ∀x 6= x′(f(x) =
f(x′) ⇔ x′ = x⊕ s), where ⊕ denotes bitwise exclusive-or ;

• 0n, if f is one-to-one; and
• undefined otherwise.

Theorem 3.2. There exists an algorithm for a QTM which computes XMI(f) (if
it is defined), with zero error probability, in expected time O(nTf (n) + G(n)), where
Tf (n) is the time required to compute f on inputs of size n, and G(n) is the time
required to solve an n× n linear system of equations over Z2.

Proof. The algorithm is very simple, consisting essentially of (an expected) O(n)
repetitions of the following routine.

Routine Fourier-twice

1. Perform the transformation F described above on a string of n zeros, pro-
ducing 2−n/2

∑
x |x〉.

2. Compute f(x), concatenating the answer to x, thus producing 2−n/2
∑

x |(x,
f(x))〉.

3. Perform F on x, producing 2−n
∑

y

∑
x(−1)x·y|(y, f(x))〉.

End Fourier-twice

Note that the (deterministic) computation of (x, f(x)) from x in time Tf (n) in
step 2 can always be made reversible (and hence unitary) at the cost of only a con-
stant factor in the number of computation steps. This is due to a result obtained
independently by Lecerf [Lec63] and Bennett [Benn73].

Suppose f is one-to-one. Then after each performance of Fourier-twice, all the
possible configurations |(y, f(x))〉 in the superposition will be distinct, and their am-
plitudes will therefore all be 2−n, up to phase. Their probabilities will therefore each
be 2−2n, and k independent repetitions of Fourier-twice will thus yield k configu-
rations each distributed uniformly and independently over configurations of the form
|(y, f(x))〉.

Now suppose that there is some s such that ∀x 6= x′(f(x) = f(x′) ⇔ x′ = x⊕ s).
Then for each y and x, the configurations |(y, f(x))〉 and |(y, f(x⊕ s))〉 are identical,
and the amplitude α(x, y) of this configuration will be 2−n((−1)x·y + (−1)(x⊕s)·y).
Note that if y ·s ≡ 0 (mod 2), then x ·y ≡ (x⊕s) ·y (mod 2), and α(x, y) = 2−n+1;
otherwise α(x, y) = 0. Thus k independent repetitions of Fourier-twice will yield
k configurations distributed uniformly and independently over configurations of the
form |(y, f(x))〉 such that y · s ≡ 0 (mod 2).

In both cases, after an expected O(n) repetitions of Fourier-twice, sufficiently
many linearly independent values of y will have been collected that the nontrivial
string s∗ whose dot product with each is even is uniquely determined. s∗ can then
easily be obtained by solving the linear system of equations defined by these values
of y. (Once the solution space is constrained to one d imension in (Z2)

n, it will yield
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1480 DANIEL R. SIMON

exactly two solutions, one of which is nontrivial.) In the second case, this string s∗

must be the s we are looking for, since we know that y · s ≡ 0 (mod 2) for each y
generated in the second case. On the other hand, in the first case, where f is one-
to-one, s∗ will simply be a random string. Hence, evaluation of, say, f(0n) and f(s∗)
will reveal whether we have found the true s (in the second case) or simply selected
a random string (in the first case).

If we allow a bounded error probability, we can use essentially the same algorithm
to solve slightly less constrained promise problems. For example, in the case where f is
one-to-one, the outputs of n/ε repetitions of Fourier-twice (for constants ε < 1) will
with probability 1−2O(n) contain a basis for (Z2)

n. On the other hand, if there exists
an s such that for a fraction at least 1− ε/n of possible choices of x, f(x) = f(x⊕ s),
then the outputs of n/ε repetitions of Fourier-twice will still all satisfy y · s ≡ 0
(mod 2), with constant probability, regardless of any other properties of f . Hence we
can efficiently distinguish between these two classes of function (for appropriate ε) on
a quantum computer with negligible error probability.

3.2. Relativized hardness of our problem. Now, in a relativized setting,
suppose that an oracle is equiprobably either an oracle uniformly distributed among
permutations on n-bit values or an oracle uniformly distributed among those two-to-
one functions f for which there exists a unique nontrivial s such that f(x) always
equals f(x ⊕ s). Then a classical probabilistic oracle TM would require exponen-
tially many oracle queries to successfully distinguish the two cases with probability
nonnegligibly greater than 1/2.

Theorem 3.3. Let O be an oracle constructed as follows: for each n, a random
n-bit string s(n) and a random bit b(n) are uniformly chosen from {0, 1}n and {0, 1},
respectively. If b(n) = 0, then the function fn : {0, 1}n → {0, 1}n chosen for O to
compute on n-bit queries is a random function uniformly distributed over permutations
on {0, 1}n; otherwise, it is a random function uniformly distributed over two-to-one
functions such that fn(x) = fn(x⊕ s(n)) for all x, where ⊕ denotes bitwise exclusive-
or. Then any PTM that queries O no more than 2n/4 times cannot correctly guess
b(n) with probability greater than (1/2)+2−n/2, over choices made in the construction
of O.

Proof. Consider any such PTM M . We say that M ’s choice of the first k queries
is good for n if M queries O at two n-bit input values whose exclusive or is s(n). If M
makes a good choice of 2n/4 queries for n, then the distribution on answers given by
O differs depending on b(n); otherwise, the distributions are identical (i.e., random,
uniformly distributed distinct values for each distinct query). Since the probability
that M guesses b(n) is only greater than 1/2 when its choices are good for n, this
probability is also bounded above by 1/2 + δ, where δ is the probability that M ’s
queries are good for n. Hence, we need only calculate a bound on δ to obtain a bound
on M ’s probability of guessing b(n).

Note that the probability that M ’s first k queries are good for n is equal to the
sum of the conditional probabilities, for each of the queries, that M ’s queries up to
and including that query are good for n, given that the previous ones were not. Note
also that given a particular fixed sequence of j queries (and their answers) which is
not good for n, the conditional distribution on s(n) (over choices made in constructing
O) is uniform over the elements of {0, 1}n for which those j queries are still not good
for n. (This is because all such possible sequences are equally likely for any s(n),
and there are equally many such sequences regardless of s(n).) For example, if the j
queries are such that their pairwise bitwise exclusive-ors are all distinct, then s(n) is
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ON THE POWER OF QUANTUM COMPUTATION 1481

conditionally distributed uniformly over the 2n − j(j − 1)/2 possible values for which
the sequence of queries is still not good for n.

Now, consider M ’s kth oracle query to O, assuming that M ’s first k − 1 queries
were not good for n. This kth query is completely determined by O’s answers to the
first k − 1 queries and by M ’s probabilistic choices; we will call it q. The probability
(over choices made in constructing O) that O’s answer to q is the same as its answer
to (a distinct) one of the k − 1 previous queries (and hence that M ’s first k queries
are good for n) is at most k/(2n − (k − 2)(k − 1)/2), since there are at most k
choices of s(n) (which was uniformly chosen from {0, 1}n) for which such a “collision”
occurs, and s(n) is conditionally distributed uniformly over all but the (at most)
(k − 1)(k − 2)/2 values for which M ’s first k − 1 queries is not good. Hence, for
any sequence of j = 2n/4 queries, the probability that it is good for n is at most∑j

k=1(k/(2
n− (k−2)(k−1)/2)) ≤∑j

k=1(k/(j
4−j2)) ≤ (j2 +j)/(2(j4−j2)) ≤ 2−n/2

(for n ≥ 1). It follows that M cannot estimate b(n) with probability better than
(1/2) + 2−n/2.

We can also use Theorem 3.3 to prove the existence of a specific oracle relative
to which there is an exponential gap (in terms of classical computing time) between
BPP and its quantum analogue, BQP (defined in the natural way; see [BV93]). Let
E be the (countable) set of classical oracle PTMs making at most 2n/4 queries on
input 1n. We say that M ∈ E solves an oracle O generated as in the above theorem if
for infinitely many n, M computes b(n), with error bounded away from 1/2 by some
constant, on input 1n. Theorem 3.3 tells us that for any M , the probability that
M solves an O so chosen is 0. Since E is countable, an oracle O so generated will
therefore with probability 1 be solved by no M ∈ E. Hence with probability 1 the
language {1n|b(n) = 1}, for b(n) chosen as in Theorem 3.3, cannot be accepted with
error bounded away from 1/2 by any M ∈ E.

Theorem 3.4. There exist an oracle O and constant ε relative to which BQP 6⊆
PTIME(2εn) (with two-sided error).

4. Conclusion. Since any quantum computer running in polynomial time can
be fairly easily simulated in PSPACE, as was pointed out in [BV93], we are unlikely
to be able to prove anytime soon that BQP is larger than P . However, Shor [Sho94]
has recently made a huge advance toward establishing the complexity-theoretic ad-
vantage of the quantum model compared to the classical one, by giving quantum
polynomial-time algorithms for two well-known presumed-hard problems: computing
discrete logarithms modulo an arbitrary prime and factoring integers. His algorithms
follow the very rough outline of the ones presented here, but with many additional so-
phistications that allow them to work over the field Z∗

p (for primes p such that p−1 is
smooth) rather than (Z2)

n, and to extract much more than a single bit of information
per iteration. A logical next step might be to try to separate BPP and BQP based on
a more general complexity-theoretic assumption such as P 6= NP or the existence of
one-way functions. Alternatively, it may be possible to prove limits to the advantages
of quantum computation through simulation results of some kind. (In [BBBV94], for
example, oracle methods are used to give evidence that NP 6⊆ BQP . On the other
hand, Grover [Gro96] has recently shown that for NP -complete decision problems,
the associated search problem with solutions of size n can be solved probabilistically,
with bounded error, in time 2n/2 on a quantum computer—i.e., more efficiently than
any known classical probabilistic algorithm.)

Another natural question regarding the model is whether the “fair quantum coin
flip” suffices as a universal nonclassical step, the way its classical counterpart, the
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fair coin flip, suffices as a universal (classical) probabilistic step. Recent work in
this direction (see, for instance, [DiV95], [BBCD95]) has shown that there are many
choices of a single nonclassical operation that will in fact suffice in simulating quantum
computations which use arbitrary feasible quantum operations; however, it is not
known whether the “fair quantum coin flip” is one such choice.

Another issue is that of alternative models of quantum computation. Yao [Yao93]
has presented a quantum circuit model (following [Deu89]) and proven it equivalent
to the QTM. In contrast, it is not yet known whether a quantum cellular automa-
ton is equivalent or more powerful (see [DST96]). Still other distinct quantum-based
computational models may exist, as well. For example, any unitary “evolution” ma-
trix describing a quantum computation (in any model) is related (by Schrodinger’s
equation) to a corresponding Hermitian “Hamiltonian” matrix which describes the
same process. There is also a natural notion of locality for Hamiltonians—but evo-
lution matrices and their associated Hamiltonians are not necessarily both local or
both nonlocal. It is therefore unclear whether even the definition of BQP (for QTMs
or for any other model) is the same for operator-based and Hamiltonian-based en-
codings. (Feynman has shown, in [Fey86], that the Hamiltonian-based model is at
least as powerful as the unitary operator-based one; whether the reverse is true is not
known.)

Beyond the question of models is the matter of their implementation. For exam-
ple, any physical realization of a quantum computer would necessarily be subject to
some error; exact superpositions would end up being represented by approximations
just as deterministic discrete computations and random coin flips are approximated
in modern computers using analog quantities such as voltages. Considerable work
has been done on the feasibility of resiliently simulating true randomness with “ap-
proximate randomness” (see, for example, [VV85], [CG88]); similar work is necessary
to determine if computation using approximations of quantum superpositions can be
made comparably resilient. Recent work by Shor [Sho96] on quantum error-correcting
codes has made progress toward this goal, showing that errors conforming to a cer-
tain restrictive model can in fact be corrected. However, it is not known how well
that model covers the types of error likely to be encountered in a practical quantum
computer. Resolution of these and other theoretical issues would be a crucial step
toward understanding both the utility and the ultimate feasibility of implementing a
quantum computer.

Acknowledgments. Many thanks to Charles Bennett, Ethan Bernstein, Gilles
Brassard, Jeroen van de Graaf, Richard Jozsa, and Dominic Mayers for valuable
insights and helpful discussion.
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